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Abstract

In this paper, we attempt to classify the situations generating
quantal response data into three main groups and develop a method of
maximum likelihood estimation based on incomplete quantal response data.
Incomplete quantal response data often arise in medical and biological
examinations. In some cases the tolerance of each test subject can be
known only to be above or below the value which is given or decided on
the day of group examination. In such situations, the standard techniques
of maximum likelihood estimation of parameters cannot be applied, because
the values of observations are not specified. The following method of
maximum likelihood estimation of parameters based on incomplete quantal
response data will have a wide range of application in statistical estimation
problems.

§ 1. The Classification of Quantal Response Data

Many problems of quantitative inference in medical and biological
researches are concerned with the relation between a stimulus and a
response. One exceedingly important type of response is known as all-
or-nothing or quantal. For example, our interest will lie in the depen-
dence of magnitude of the response on the dose of a drug. However,
certain responses permit of no graduation and can be expressed only as
‘occurring’ or ‘mnot-occurring’. If the characteristic response is quantal,
occurrence or non-occurrence will depend upon the intensity of the
stimulus (for example, a vitamin, a drug, a mental test, or an age). For
any one subject, under controlled conditions, there will be a certain
level of intensity below which the response does not occur and above
which the response occurs; such a value has often been called @ foler-
ance value. This tolerance value will vary from one subject to another
in the population used.
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The discussion of quantal response data therefore requires the
recognition of frequency distribution of tolerances over the population
studied. ‘ ,

The major situations of quantal response data can be identified as
one of the following three models.

A. Dose-summing up model (ordinary data)
B. Dose-assigning model (cumulative frequency data)
C. Group examination model  (incomplete data or interval data)

The term dose may be replaced by any other one which represents
the intensity of the stimulus.

Model A. Sometimes the tolerance of each test subject in respect of
a stimulus can be measured directly. For example, in the ‘cat’ method
for the assay of digitalis, anaesthetized cats are given a continuous slow
intravenous infusion of digitalis until death occurs. In such a case, we
can obtain the measurements of tolerance like measurements of length or
weight. But there are some weaknesses. If there is an appreciable time
lag between the injection of the drug and its taking effect, the tolerance
will be overestimated. Moreover, the dose required to cause death under
conditions of slow infusion need not be the same as the tolerance for
more rapid infusion. .

An alternative direct measurement of tolerance can be practicable,
if there is no cumulative effect of doses already given, either as lower-
ing or as increasing the resistance of the subject. We give to each
subject successive doses of different intensity, allowing after every dose
a suitable time interval for a return to normal and making the differ-
ences sufficiently small for a satisfactory determination of the lowest
dose which causes the characteristic response. With the direct measure-
ment of tolerance, the appropriate methods of statistical analysis are the
same as with other types of biological measurements. These methods
of statistical analysis are detailed in many text-books.

Direct tolerance measurement is, however, often impracticable on
account of the time the methods require. Even more commonly, it is
ruled out entirely by the nature of the problem: a direct measurement
technique for the poison tolerance of an insect, or of a fungus spore, is
scarcely conceivable. Especially in the medical research whose subject
is man, a direct tolerance measurement is almost impracticable.

Model B. An entirely different approach must be adopted if a direct
tolerance measurement is impracticable on account of cumulative effect
of doses already given, the time the methods require and the nature of
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the problem. The potency of the stimulus must be assessed from the
proportions of subjects that respond, in random samples of the popula-
tion tested at different doses.

If a batch of n test subjects (a random- sample of size n from the
population) is exposed to the same dose, and all react independently, the
probabilities of n, (n—1),..., 1, 0 responding are the (n+1) terms in the
expansion of the binomial (P+Q)". The probability P that the subject
dies is the proportion of deaths that would occur if the whole population
received the same dose, and Q=1—P. The probability of exactly r
responding is therefore

Prlm= PrQr. ,

rl(n r)/

As the outcome of an experiment on different doses, applied under
standardized conditions to random samples, we obtain the following data.

Dose level Sample size No. affected %
X1 ng I P1
Xo ng T2 P2
Xs ns Is Ps

Among the statistical analysis based on these data, probit analysis is
the most popular and is developed in detail. [1] In this model the
estimate p; is given not by r,/n but by r,/n; and so it is desirable that
n; should be sufficiently large from the point of precision, but this.is
often impracticable on account of the time, cost and.so on. 'Further-
more, optimal allocation of sample n (n=n;+mn,+--+n,) to dose levels
and optimal spacing between dose levels are very difficult because the
tolerance distribution is unknown. This model is often inapplicable in
the medical research whose subject is man.

Model C. In the medical research we are often obliged to deal with
incomplete quantal response data obtained by survey or group examina-
tion. Then the quanial response techniques as probit analysis have been
used in the study of such phenomenon in some population as cannot be
exactly dated but can readily be recorded as having occurred or not
occurred in any one individual. It is organizationally and possibly
psychologically difficult to obtain reliable records of the age of menarche
in adolescent girls. On the other hand, a sample of girls distributed
over the appropriate age range can relatively easily be classified accord-
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ing to whether or not each has yet menstruated. The standard dose-
response techniques are not applicable, even though age is regarded as
analogous to dose, and ‘having passed menarche’ as response. With
the standard dose-response techniques, ages on the day of survey must
be grouped according to their magnitude, into some classes. We select
a suitable representative age of each class and the age is regarded as
analogous to dose. Then these representative ages of classes are not
exact values and so the method of regression analysis should notl be
applied, for the use of regression methods may give unreliable results
if there is any appreciable error in the measurement of independent
variate.

We should develop the estimation method of menarche age distri-
bution directly from incomplete quantal response data where the incom-
plete data are sets of the ages of menarche each of which is known
only to be above or below her age on the day of survey. There are
many problems of the same type, for example, the estimation of the age
distribution of the first milk-teething, the estimation of the distribution
of tolerance concentration of some toxin accumulated in the liver and
SO on.

§2. Maximum Likelihood Estimation Based on Incomplete Quantal
Response Data

§2.1 Introduction

Here we are going to be concerned with incomplete quantal response
data in Model C. In Model C the tolerance value x* of each subject is
known only to be above or below the value x which is given or decided
on the day of survey. That is to say, we can get either x*>x or x*x.
(If x*=x, x* is an ordinary datum.) If the type of distribution of toler-
ance x* is given, the relation #* > x or #* {x may be replaced by interval
data. For example, with the normal distribution #* > x may be replaced
by (¥, o) and x* {x by (—co, %), and with the log-normal distribution
#*> x may be replaced by (x, o) and x* {x by (0, x). From this point
of view interval data may be designated general censored data. In the
following discussion we will use the interval data (general censored data)
(y, 2) instead of x*, where y {x* <z and », z are determined respectively
as the examples mentioned above.

At the obvious risk of excluding certain situations from our discus-
sion we shall confine our concept of ‘data analysis’ to the problem of
‘estimation of parameters from sample data’. Generally our sample
data will be composed of mixtures of interval data and ordinary ones.
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Therefore the following method of maximum likelihood estimation of
parameters can be applicable to various statistical estimation problems.

§ 2.2 Formulation and Maximum Likelihood Solution

Suppose (%), % -, %n 5%, %%, x,*) is a random sample from a
population having continuous distribution function F(x; 0);

(i) The xs are ordinary measurement values of sample units.

(ii) The x*s are unspecified values of sample units which cannot be
measured but where the relation ¥,<x,*<z; can be known to
hold, and y;, 2, are independent of x,* and are the values which
are given or decided on the day of survey or group examination.

(ili) Moreover, we assume that x* distributes according to the pro-

bability density function f(x; 0)/(F(z;; 0)-F(y;; 0)) (v,{x<2)),

where f(x; 6):%9;0)‘ It is clear that the assumption for

x;* is always satisfied in Model C. The mathematical form of
the distribution function F(x; 6) is known, but the value of
parameter 6 is unknown.
Here we are obliged to use the interval data (y,, z;) instead of x;*.
Then we define the likelihood function of the random sample (%, -+, %,
xl*, e xm*) by

L) <1 fixdzi - T1 (F(z)—F(y;)), (1)
i=1 j=1

where F(x) is the distribution function and f(x) is the probability density
function of X. [2] And then we obtain

L*(6)=log L(6)=log ¢+ log Stz + 3 log (F(z))— F(y;)), (2)
i=1 j=1

where ¢ is constant.

The log-likelihood function L*(0) and L(f) have their maximum at
the same value of 8, and it is sometimes easier to find the maximum
of L*(). If certain regularity conditions are satisfied, the point where
the L*(9) is a maximum is a solution of the equation

oL* _

%0 0 . (3)

We assume that the tolerance distribution is normal or log-normal,
and then the tolerance distribution involves two parameters, say p and
o’. For convenience of notation, let the variance o* be denoted by ¢.
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Then the maximum likelihood equations for estlmatmg the parameters
w and ¢ are given by

oL* _, oL*
< oy ’ 09

=0. (4)

Solving these equations we obtain the maximum likelihood estimates g,
¢ which do maximize L*. The explicit solution of such equations is
impossible, but iterative methods can give successive approximations
converging to the solutions. In most cases the following iterative pro-
cedure is generally used. Suppose that w, ¢, are any approximations
to the solutions of the equations (4). By the Taylor-Maclaurin expan-
sion, to the first order of small quantities, second approximations will be
Io+0w, ¢o+0¢, where du, 0 are obtained from

6L* 0’L* 0*L*

6#0 00 s +od 016090 =0, (5)
oL* 02L* °L* .
6¢o +od 8#08‘)—"0 +oé 6¢02 =0 ’

the addition of the suffix to u, ¢ indicates that the first approximations
are to be substitued after differentiation. In general these linear equa-
tions are easily solved for du, d¢. The process may now be repeated with

Hy= o+ 81,
1=Hg } 6)

¢ =0+ 09,

in place of w, ¢, and further cycles computed until the latest set of
adjustments is negligible. The maximum likelihood estimates ([L, ) of
the parameters (1, ¢) are the values satisfying simultaneously the two
estimating equations (4).

The asymptotic variance-covariance matrix of (u, ¢) can be appro-
ximated by

{V([t) Cov (x, é)]_ [aZL*/auz 82L*/8ﬂ6¢]‘1 o

Cov (4, m) V() 02L* /090 8 L*/06% J(u, ¢)=(h, &) -

Inconveniently the solution of the equations (5) is impossible for the
L*@) under certain conditions and so we propose the following relaxation
method which is a modified method of Gauss-Seidel’s.

§ 2.3 Development of Maximum Likelihood Equations
The most important form is that of the estimation of the para-
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meters of the tolerance distribution given by equation

B

1 EN — )2
F(X(), M, ‘72)= (7]/_2_”_T S— €Xp <— (xzof) )dx;

where ¥ measures dose on a logarithmic or other suitable matametric
scale (x, being a particular value of x). Assume that F(x, 0) is a normal
distribution function having unknown parameter 6, and then for the
data described above the log-likelihood function L*(p, ¢) is given by

L*(e, $)=log c+ 3 log fx) + 3 log (F(z;)— F(3,), (8)
i=1 j=1

where ¢ is constant,

— )2
S == exp (~ 577 and F(t>=y fawde

On differentiating L*(p, ¢) with respect to x and ¢ and putting these
derivates equal to 0, we obtain the estimating equations for the normal
parameters p, $(=c?)

N R )
0=0""— i — 7
" ou ;x jz-l o2 =0y )

, (9)

, /. /'+ /~ /.
0-2¢-2 —n+2x2+2 —EAE )T RS (10)

a0 0@ H-o0)
where Zi=(i—m/o, ¥ i=(y;—m/o, 2 j=(z;—m/o,

’ 1 yljz ’ lez
@(yj)=mexp - ) P2 )= VZ exp 5 )

i i i #
oy )= VZES exp( )dt oz’ )= 1/2”5 exp<—7>dz‘.

Substituting w=pw,+0p, p=¢, (c=0y) for (9) gives

m oz Yoy
£ (4 3u> § P )R )
% =1 Oz iu)_Q(y fo)

RS {—Z/fo¢(z,io)+ylfogo(y,jo) _( — (&) + 9y :o)>
%0 =1 Q)(Zlfo)_®(yljo) Q)(Z Jo) @(y Jo
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Then we get ;

ou #%(i x';o+f‘, Ajo> / {n—l—i (A%;,— Bj,) } (11)
i1 =1 i=1

and

ﬂ1=ﬂ0+8ﬂ$ﬂ0+00< ! x,io+i: Afo) / {n_l—i (Azfo_Bf ) } ’ (12)
i=1 i= j=1

where x/;°=(x,-—,u0)/ao, y,io=(yi_ﬂo)/60, Z,j.,=(2j_ﬂo)/00,

Ai‘):Mi , and Bjo= _Z,fo¢(z/io)+y'fo¢(y,jo)

oz’ ;)— 0y ;) o';)—o(y ;)

Now on substituting #=u;, ¢=¢,+0p (Pp,=0,") for (10), we obtain

’ ’ ’ ’
n o, 56 m —z 0z ;)Y 9y ;)
—nt p 2;‘ 1—92 1 > 1 ,1 1
2 l( ¢o) %1 oz ;)—0(y ;)

i=1

—(&,+2' 199G 1)+ 5,453,990 1)
(D(Z’jl) —d>(y'j1)

1o f
T =

(St s Y] L
o' ;)—o(y ;) S

Then we get
. _ 7 ’ m n -, 2 1 m .
06 =0 —n+ 307+ 3 By, )/{Zx e By} (®)
i=1 j=1 i=1 j=1
and
Br=d0-+ 360 + o —n+ 303, + 2By, / (L + L 3B 8,- G} o)
i=1 j=1 i=1 2 =1
where K =i— /o, ¥ =(yi—m)/o, 2 j=(2;—m)/o,
‘ —25.90E ) +y 909 ;) -2 ;20 ) +y 200y ;)
B‘ — J1 . J1 l; J1 nd C — J1 - J1 1/1 J1
i o )—oly ) e T o' ;)—0(y'1,)

§2.4 Iterative Maximum Likelihood Estimating Procedure

The iterative maximum likelihood estimating procedure is, then, as
follows.
(1°) Set initial values p, and ¢, (=0¢).
(2°) From m, and ¢, (=0’), compute the standardized variables

xlio=(xi—ﬂo)/00, yljo=(yj_ﬂ0)/°o, Z/jo=(2’j—ﬂo)/‘70
and then calculate

—Z'j‘,?"(z/jo) +y',~o¢(y'jo)
o2 ;)—o(y ;)

— 9@’ ;) T 9055,
e 20 and Bj=
oG ;) -0y ;) 7

Aio=
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(3°) With these calculated values, estimate ox and p, by the follow-
ing equations.

6u=oo<ix',~o+§"jAh)/[n+£}(A2jo—B,-o)} :

i=1 Jj=1 Jj=1
My =po+ou.

(4°) Now from pu; and ¢, (=), compute the standardized variables
K =@i— /0, ¥ i =wi—e/o0, 2 5,=(2;—wm)/%
and then calculate

U
B~ —23,9@ 1) +5 5,909 3) and G,— —2'5, %0 ;) +y'5, 20055 )

a 0@ ;)—o(y ;) 0@z ;)— 0y ;)

(5°) With these calculated values, estimate d¢ and ¢, by the following
equations.

6¢=¢0<—n+i x,f12+§m: Bj1 >/{i x/i12+ %‘i(szl_B.h_ C}l)} >
i=1 j=1 i=1 j=1
¢1=¢0+6¢.

(6°) Setting wi, ¢ as initial values in place of w, ¢, respectively, con-
tinue steps (1°)~(5°) until the latest set of adjustments, say S,
8¢ is negligible.

We will denote the latest set of estimates by ;b, ¢ These estimates
» and <,i> are the solution of the maximum likelihood equations (9), (10),
and the joint maximum likelihood estimates.

The asymptotic variance-covariance matrix of (w, ) can be approxi-

mated by
82L* 82L* -1

v Covad| | Tow Touos
Cov(g, #) ey | | 8Lt 9L (15)

00 99" M, gy=(h, ) +

[Remark] For the computation of ®(¥) it is convenient to use the Hastings’
approximation formulus. [3]
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