BRIEF NOTE

PROTECTIVE EFFECT OF ZINC CHLORIDE ON CARBON TETRACHLORIDE-INDUCED REDUCTION OF COMPLEMENT ACTIVITY IN RATS

Accepted for Publication on September 11, 1981

It has been demonstrated that total hemolytic complement activity in rats was markedly reduced following the administration of a sublethal dose of carbon tetrachloride (CCl₄)⁵. In other experiments, it has also been reported that CCl₄-induced liver damage could be significantly prevented by pretreatment of animals with divalent metals, including zinc⁵, and cobalt⁴⁵. In this respect, a preliminary study was carried out to see whether zinc chloride (ZnCl₂) would protect CCl₄-induced reduction of total hemolytic complement activity in rats.

MATERIALS AND METHODS

Male Wistar rats, 11 weeks old, were used in this study. The animals were fed Oriental MF pellets (zinc content 6.05mg/100g), and given tap water ad libitum. They were divided in 4 groups of 6 rats each. Rats were injected intraperitoneally with aqueous solution of ZnCl₂ (Kojundo Kagaku Kenkyusho) so that they received 250 μmol. Injection volume was 5 ml/kg and control animals received an equal volume of saline. Twenty-four hours following the pretreatment with ZnCl₂ or saline, rats were given intraperitoneally 1ml/kg of olive oil or 0.5ml/kg of CCl₄ in a 50% olive oil solution. Twenty-four hours later, the rats were sacrificed under light ether anesthesia and blood was drawn from abdominal aorta with plastic syringes. It was allowed to clot at room temperature for one hour, then left standing overnight at 4°C in a refrigerator, and serum was separated by centrifugation.

Total hemolytic complement activity in serum was assayed by a modified method of Mayer et al.⁵ as the 50 percent hemolytic unit (CH50). Total protein content of serum was determined by a modified biuret method (Wako). Composition of serum proteins was analyzed by the cellulose acetate membrane electrophoresis. Serum alkaline phosphatase (Al–P) was assayed by a modified method of Bessey–Lowry (Alkalinephospha B–Test, Wako). Serum glutamic oxalacetic transaminase (SGOT) was determined by a modified method of Reitmann and Frankel (S. TA–Test, Wako). Serum triglyceride level (TG) was assayed by the method of Moteki et al. (Triglyceride–Test, Wako). Concentration of zinc in serum was determined by a flame atomic absorption method (Perkin–Elmer 503)⁵.
RESULTS AND DISCUSSION

The results of the present investigation are summarized in Table 1, 2 and Fig. 1.

Animals pretreated with ZnCl₂ had significantly higher CH50 values following CCl₄ than those of CCl₄-treated animals, and the results demonstrated that pretreatment of rats with ZnCl₂ prior to CCl₄ resulted in significant protection against CCl₄-induced reduction of total hemolytic complement activity (Table 1, Fig. 1). The results also suggested that the acute hepatic damage following CCl₄ intoxication, as measured by hepatic transaminase release (SGOT), could be partially prevented by pretreatment with ZnCl₂, as reported by others (Table 2, Fig. 1). A close inverse correlation was observed between CH50 values and SGOT values, as an index of hepatic damage ($r = -0.691$, $p < 0.02$).

Protective effect of ZnCl₂ on CCl₄-toxicity, as measured by serum TG, Al-P levels, composition of serum protein fractions, as well as relative weights of the livers and the kidneys, was not clearly observed (Table 2).
Table 1. Effect of ZnCl₂ on CCl₄-induced reduction of complement activity

<table>
<thead>
<tr>
<th>treatment</th>
<th>no. of animals</th>
<th>body weight g</th>
<th>CH 50</th>
<th>TP g/dl</th>
<th>A/G</th>
<th>serum Zn µg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>saline + olive oil</td>
<td>6</td>
<td>324±17 a,b</td>
<td>47.6±11.3</td>
<td>6.36±0.18</td>
<td>0.94±0.16</td>
<td>117±22</td>
</tr>
<tr>
<td>ZnCl₂ + olive oil</td>
<td>6</td>
<td>308±28</td>
<td>47.4±10.9</td>
<td>5.60±0.19</td>
<td>0.80±0.07</td>
<td>302±105</td>
</tr>
<tr>
<td>saline + CCl₄</td>
<td>6</td>
<td>322±9</td>
<td>13.0±8.3</td>
<td>5.55±0.27</td>
<td>0.80±0.09</td>
<td>154±32</td>
</tr>
<tr>
<td>ZnCl₂ + CCl₄</td>
<td>6</td>
<td>326±39</td>
<td>33.3±7.6</td>
<td>4.91±0.23</td>
<td>0.79±0.11</td>
<td>349±92</td>
</tr>
</tbody>
</table>

a) mean±s. d. statistically significant *p<0.05 **p<0.01

Table 2. Effect of ZnCl₂ on CCl₄-induced release of GOT into serum

<table>
<thead>
<tr>
<th>treatment</th>
<th>no. of animals</th>
<th>GOT IU/l b)</th>
<th>TG mg/dl</th>
<th>Al-P BL c)</th>
<th>liver g/100g b. w.</th>
<th>kidneys g/100g b. w.</th>
</tr>
</thead>
<tbody>
<tr>
<td>saline + olive oil</td>
<td>6</td>
<td>83±22</td>
<td>79.4±44.3</td>
<td>12.1±5.0</td>
<td>3.62±0.32</td>
<td>0.68±0.04</td>
</tr>
<tr>
<td>ZnCl₂ + olive oil</td>
<td>6</td>
<td>124±117 b, c</td>
<td>94.3±32.3</td>
<td>8.6±3.5</td>
<td>3.81±0.17</td>
<td>0.67±0.09</td>
</tr>
<tr>
<td>saline + CCl₄</td>
<td>6</td>
<td>3023±965</td>
<td>51.0±31.0</td>
<td>11.4±3.8</td>
<td>3.74±0.48</td>
<td>0.68±0.04</td>
</tr>
<tr>
<td>ZnCl₂ + CCl₄</td>
<td>6</td>
<td>1382±1307</td>
<td>47.4±35.7</td>
<td>12.8±6.6</td>
<td>3.84±0.29</td>
<td>0.64±0.04</td>
</tr>
</tbody>
</table>

b) International Unit c) Bessey-Lowry Unit

Carbon tetrachloride is well known to cause significant liver damage, and this damage is due to peroxidation of membrane lipids by reactive free radicals produced by the hepatic microsomal drug oxidizing system[2]. It has been demonstrated that CCl₄-induced liver injury could be prevented by pretreatment of animals with ZnCl₂. The possible mechanism of the protective effect of ZnCl₂ has not been fully understood, however, divalent metal zinc was shown to be a stabilizer of biological membrane possibly because of its interference with lipid peroxidation[3]. It has also been suggested that zinc-induced metallothionein could protect the CCl₄-induced liver damage by sequestering reactive metabolites of CCl₄[4]. However, the mechanism of CCl₄-induced reduction of total hemolytic complement activity, as well as that of protective effect of zinc against the alteration of complement system have not been understood, and further studies should be needed to clarify these mechanisms.

Acknowledgment

The author wishes to thank Misses H. Asahara and Y. Iwasaki for their helpful technical assistance.

Yoshio MOCHIZUKI
Department of Hygiene
Kawasaki Medical School
Kurashiki 701-01, Japan
REFERENCES

