A note on the weighted uniform distribution mod 1

bу

Kazuo GOTO

Department of Mathematics, Kawasaki Medical School Kurashiki 701-01, Japan

(Received on Sept. 2, 1981)

Abstract

M. Tsuji[3] generalized the result of H. Weyl[4] concerning the theory of uniformly distribution to the case of weighted means. And the case of the weighted uniformly convergence was generalized by the auther's paper[1]. T. Kano[2] showed the necessary and sufficient condition for a sequence to be weighted uniformly distributed mod 1 when a weight and a sequence satisfy some conditions.

It is our aim in this paper to extend Kano's result to the case of weighted uniformly convergence.

Now we shall begin with two key definitions:

Let f be a complex-valued continuous function on $(-\infty, +\infty)$ with period 1. Definition 1. The sequence (x_n) is said to be (M, λ_n) -uniformly distributed mod 1 (abbreviated (M, λ_n) -u. d. (mod 1) if

$$\lim_{n\to\infty} \frac{1}{\Lambda_n} \sum_{k=1}^n \lambda_k f(x_k) = \int_0^1 f(x) dx$$

where

$$\Lambda_{\mathbf{n}} = \lambda_1 + \lambda_2 + \dots + \lambda_{\mathbf{n}}, \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\mathbf{n}} \ge \dots > 0, \ \sum_{n=1}^{\infty} \lambda_n = \infty.$$

Definition 2. The sequence (x_n) is said to be (M, λ_n) -well distributed mod 1 (abbreviated (M, λ_n) -w. d. (mod 1) if

$$\lim_{n\to\infty}\frac{1}{\varLambda_n^k}\sum_{\nu=k+1}^{k+n}\lambda_{\nu}f(x_{\nu})=\int_0^1f(x)\mathrm{d}x\qquad \text{uniformly in }k=0,1,2,\cdots,$$

where

Kano[2] proved the following theorem:

Let $\lambda_n = \lambda(n)$, where $\lambda(t) > 0 \ (t \ge 1)$ is a non-increasing function of class $C^1[1, \infty)$

such that $\int_1^t \lambda(u) du \rightarrow \infty$, and let g(t), defined for t \geq 1, be such that

- (a) $g(t) \in C^2[1, \infty)$,
- (b) $g'(t) \rightarrow 0 (t \rightarrow \infty)$,
- (c) $\lim_{t\to\infty} \frac{1}{\lambda(t)} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\lambda(t)}{g'(t)} \right)$ exists.

Then $\{g(n)\}(n=1,2,\cdots)$ is (M, λ_n) -uniformly distributed mod 1 if and only if

$$Q(t) \stackrel{\text{def}}{=} \frac{g'(t)}{\lambda(t)} \int_1^t \lambda(u) du \rightarrow \pm \infty \qquad (t \rightarrow \infty).$$

We shall state the following extension of above Theorem.

Theorem 1. Let $\lambda(t) > 0 (t \ge 1)$ be a non-increasing function of class $C^1[1, \infty)$ such that $\int_{k+1}^{k+n} \lambda(t) dt \to \infty$ uniformly in k and let g(t), defined for $t \ge 1$, be such that

- (a) $g(t) \in C^2[1, \infty)$,
- (b) $g'(t) \rightarrow 0$,
- (c) $\lim_{t\to\infty} \frac{1}{\lambda(k+t)} \cdot \frac{d}{dt} \left(\frac{\lambda(t+k)}{g'(t+k)} \right)$

exists, and the convergence is uniformly in $k=0,1,2,\dots$,

Then $\{g(n)\}\$ is (M, λ_n) -w. d. (mod 1) if and only if

$$Q_{k}(t) = \frac{g'(t+k)}{\lambda(t+k)} \int_{k+1}^{k+t} \lambda(u) du \rightarrow \pm \infty.$$

as $t\rightarrow\infty$, uniformly in k.

Lemma. Let g(t) be such a function defined for $t \ge 1$ that

- (i) $g(t) \in C^2[1, \infty)$
- (ii) $g'(t)\rightarrow 0$, not monotone,
- (iii) $\lim_{t\to\infty} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{g'(t)} \right)$ exists.

then

$$\lim_{t\to\infty}\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{\mathbf{g'}(t)}\right)=0.$$

Proof. First we assume $\liminf>0$. From the assumption, there is a continuous function h(t) such that

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{1}{\mathrm{g}'(\mathrm{t})} \right) = \mathrm{h}(\mathrm{t}) > 0$$

hence

$$g''(t) = \frac{-h(t)}{\left\{\int_{t_0}^t h(y) dy\right\}^2}.$$

By the assumption (ii), the sign of g''(t) changes infinitely many times as t tends to infinite. This contradicts the assumption of h(t). Therefore $\liminf \leq 0$.

In the same way, it would follow that limsup≥0. The proof is complete. (q. e. d.)

Proof of Theorem 1. From the above lemma, the limit of condition (c) is 0. Hence, by easy computation, $Q_k(t)$ tends to $\pm \infty$ uniformly in $k=0,1,2,\dots$. Next we shall show the sufficiency. We begin with the case that $Q_k(t) \rightarrow \alpha = 0$ as $t \rightarrow \infty$. by (c)

$$(1) \quad \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\lambda(t+k)}{g'(t+k)} \right) = \frac{1}{\alpha} \lambda(t+k) + o(\lambda(t+k)) \qquad (t \to \infty).$$

By Euler summation formula

$$(2) \sum_{\nu=k+1}^{k+n} \lambda(\nu) e^{2\pi i m g(\nu)} = \int_{k+1}^{k+n} \lambda(t) e^{2\pi i m g(t)} dt + o\left(\int_{k+1}^{k+n} \lambda(t) dt\right).$$

If we assume that $\{g(n)\}\$ is (M, λ_n) -w. d. (mod 1) we have by (2)

$$\int_{\mathbf{k}+\mathbf{1}}^{\mathbf{k}+\mathbf{n}}\!\!\lambda(t)e^{2\pi i\mathbf{m}\mathbf{g}(t)}\mathrm{d}t\!=\!o\!\left(\!\int_{\mathbf{k}+\mathbf{1}}^{\mathbf{k}+\mathbf{n}}\!\!\lambda(t)\mathrm{d}t\right)\!.$$

On the other hand integration by parts shows

$$(3) \quad (2\pi i m) \int_{k+1}^{k+n} \lambda(t) e^{2\pi i m g(t)} dt = \frac{\lambda(k+n)}{g'(k+n)} e^{2\pi i m g(k+n)} - \frac{\lambda(k+1)}{g'(k+1)} e^{2\pi i m g(k+1)} - \int_{k+1}^{k+n} e^{2\pi i m g(t)} \frac{d}{dt} \left(\frac{\lambda(t)}{g'(t)}\right) dt.$$

By (1), we obtain

$$\int_{k+1}^{k+n} e^{2\pi i m \mathbf{g}(t)} \frac{d}{dt} \left(\frac{\lambda(t)}{\mathbf{g}'(t)} \right) dt = \frac{1}{\alpha} \int_{k+1}^{k+n} \lambda(t) e^{2\pi i m \mathbf{g}(t)} dt + o\left(\int_{k+1}^{k+n} \lambda(t) dt \right).$$

From (3)

$$\begin{split} e^{2\pi i m g(k+n)} &= \frac{g'(k+n)}{\lambda(k+n)} \Big[(2\pi i m) \int_{k+1}^{k+n} \lambda(t) e^{2\pi i m g(t)} dt + \frac{\lambda(k+1)}{g'(k+1)} e^{2\pi i m g(k+1)} \\ &\quad + \int_{k+1}^{k+n} e^{2\pi i m g(t)} \frac{d}{dt} \Big(\frac{\lambda(t)}{g'(t)} \Big) dt \Big] \\ &= \frac{g'(k+n)}{\lambda(k+n)} \Big[\frac{\lambda(k+1)}{g'(k+1)} e^{2\pi i m g(k+1)} + o\Big(\int_{k+1}^{k+n} \lambda(t) dt \Big) \Big] = o(1). \end{split}$$

since assumption of $\lambda(t)$ and $Q_k(t) \rightarrow \alpha \neq 0$. Hence we obtain

$$e^{2\pi i m g(k+n)} = o(1)$$
.

which is a contradiction. Next we assume $Q_k(t) \to \pm \infty$ uniformly in k. By Euler summation formula, we obtain (2). Hence from (c) and assumption of $\lambda(t)$,

$$2\pi im \!\! \int_{k+1}^{k+n} \!\! \lambda(t) e^{2\pi i m g \, (t)} \! dt \! = \! o \! \left(\! \int_{k+1}^{k+n} \!\! \lambda(u) du \right) \, uniformly \, \, in \, \, k$$

Lastly we prove that $\{g(n)\}$ is not (M, λ_n) -u. d. (mod 1) when $Q_k(t) \rightarrow 0$. This is a consequence of the following theorem. (q. e. d.)

Theorem 2. Let g(t) be differentiable for $t \ge 1$ and let $\lambda(t)$ be the same function in Theorem 1. If

$$\frac{g'(t+k)}{\lambda(t+k)} \int_{1+k}^{t+k} \lambda(u) du \to 0 \qquad (t \to \infty)$$

then $\{g(n)\}\$ is not (M, λ_n) -w. d. (mod 1).

Proof. We assume

$$\frac{g'(t+k)}{\lambda(t+k)} \int_{1+k}^{t+k} \lambda(u) du \rightarrow 0, \ t \rightarrow \infty,$$

and further

$$(4) \sum_{\nu=k+1}^{k+n} \lambda_{\nu} e^{2\pi i m g(\nu)} = o\left(\sum_{\nu=k+1}^{k+n} \lambda_{\nu}\right).$$

when $n\rightarrow\infty$. Then we have

$$\frac{g'(t+k)}{\lambda(t+k)} \sum_{\nu=1+k}^{(t)+k} \lambda_{\nu} \rightarrow 0,$$

(5)
$$g'(t+k) = o\left(\frac{\lambda(t+k)}{\sum_{\nu=1+k}^{(t)+k} \lambda_{\nu}}\right).$$

On the oter hand partial summation formula shows

(6)
$$\operatorname{Re} \sum_{\nu=k+1}^{k+n} \lambda_{\nu} e^{2\pi i m g(\nu)} = \sum_{\nu=k+1}^{k+n-1} (C_{\nu} - C_{\nu+1}) \Lambda_{\nu}^{k} + C_{k+n} \Lambda_{n}^{k}$$

where

 $C_{\nu} = \cos(2\pi mg(\nu))$

$$(7) \left| \sum_{\nu=k+1}^{k+n-1} (C_{\nu} - C_{\nu+1}) A_{\nu}^{k} \right| \geq \sum_{\nu=k+1}^{k-1} \left| C_{\nu} - C_{\nu+1} \right| A_{\nu}^{k} = o(A_{n}^{k}).$$

since (5), $\lambda(t)\downarrow$ and $\Lambda_k^n\uparrow\infty$. Therefore from (4), (6) and (7)

$$C_{k+n} = \cos(2\pi mg(k+n)) = o(1).$$

and similary

$$\sin(2\pi mg(k+n)) = o(1)$$
.

that is, we obtain, as $t\rightarrow\infty$

$$e^{2\pi i m g(k+n)} = o(1)$$
.

This is a contradiction.

(q. e. d.)

References

- 1) Goto, K.: An Extension of the weighted uniform distribution mod 1, Kawasaki Igakkai Shi Liberal Arts Science Course, Kawasaki Medical Society 6: 1-10, 1980.
- 2) Kano, T.: Criteria for uniform and weighted uniform distribution mod 1, Comment. Math. Univ. St. Pauli 20: 83-91, 1971.
- 3) Tsuji, M.: On the uniform distribution of numbers mod. 1, J. Math. Soc. Japan 4: 313-322, 1952.
- 4) Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77: 313-352, 1916.