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Abstract

The author studied in [ 1] the conditions that the sequence has (M, 1,)-weighted
uniform distribution function mod 1 g(x), that g(x) is continuous and that g(x) is
absolutely continuous.

In this paper, we shall prove the analogue results for the continuous distribution
function [2; Chap 1. §9].

Let 4(t) defined on [0, %) be a positive monotone decreasing and
T
ACT)={ 2(1)dt tend to infinity as T.

Definition 1. The Lebesgue-measurable function f(¢) defined on [0, o) is said to have
(M, X)-asymptotic continuous distribution function mod 1 (abbreviated (M, D-a. ¢. d. f.
(mod 1)) g(x) if for each real-valued continwous function w on [0, 1],

tim &S 1w 0D at = wdga),

where {t} is the fractional part of t.

Definition 2. The Lebesgue-measurable function f(t) defined on [0, ) is said to
have (M, X)-asymptotic well continuous distribution function mod 1 (abbreviated (M, 2)-a.
w. c. d. f. (mod 1)) g(x) if for each real valued continuous function w on [0, 1],

T+
ézﬁiA(T k)S AAw{f()HY)dt= Sw(x)dg(x) uniformly in k€0, o),

T+k
where ACT, k) =So+k A@)ds.

Now we shall state the results.

Theorem 1. The Lebesgue-measurable function f(¢) defined on [0, ) is (M, })-a. w.
c. d. f. (mod 1) g(x) if and only if for all h€e Z
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T+
2mihf(t)
1) ) k)S ie dit=as

exists uniformly in k€[0, o) and

@) ‘ d,,=S:e 2mibsgg(x).

Theorem 2. The function (f()) has a continuous (M, D-a. w. c. d. f. (mod 1) if and
only if for every positive integer h the limit (1) exists uniformly in k€[0, ) and, in
addition

(3) Iim —Z [y 2=

Hooo H h=1

Theorem 3. Let the function f() have (M, N-a. w.c.d. f. (mod 1) g(x) Then g(x)
is absolutely continuous and g'(x) € L2(0, 1) if and only if for all h€Z

T+
ik f(t)
(4) v=lim k)g e zrinsn gy,

exists uniformly in k€0, o) and, in addition

(5) i °°°°| oy P<+oo,

Taking k=0, we obtain the following results easily.

Corollary 1. The Lebesgue—measurable function f() defined on [0, o) has (M, D-a.
¢. d. f. (mod 1) g(x) if and only if for all he Z

Tihf(t)
(6) fim A(T)S A 2Ot =a

Corollary 2. The function (f(#)) has a continuous (M, D-a. c. d. f. (mod 1) if and
only if for every positive integer h the limit (8) exists and, in addition

lim —Z| ay P=0.

H—>oo

Corollary 3. Let the function f(t) have (M, D-a. c. d. f. (mod 1) g(x). Then g(x)
is absolutely continuous and g’ (x) ELZ(O 1) if and only if for all he Z

ihf wihzx,
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exists and, in addition

h:ioJ ay P<+oo.

The proof of Theorem 1,2 and 3runs along the same lines as [1]. We shall
prove above results.

Proof of 1. The necessity follows from the fact that the function exp (2zihx)
is continuous on (—oo, ) with period 1. Now assume that (f(t)) satisfies (1), and
p(x) is a continuous function on [0, 1]. By Weiestrass’ approximation theorem,
there exists a complex trigonometric polynomial P(x), that is, a finite linear com-
bination of functions like exp(2zimx) (m € Z) such that for any positive ¢, we have

sup | p(x) —P(x) | <e.

0=x<1

Thus, for n sufficient large, using triangle inequality,

l ACT, k)s 2A(WpUE}Hdt— Sp(x)dg(x)’

T+
g2e+~A(T k)S AP ddt— Sp(x)dg(x)\<3e

since the last term, as n—oo, tends to zero uniformly in k by virture of (1).
(g. e. d.).

Proof of 2. The existence of the limit (1) is necessary. Next we prove that
if for (f(t)) we have

T+
2mihf(t), 2™ihx,
l‘i?oA(T k)S A= g (o).

uniformly in k€ [0, o) for all positive integers h, then g(x) is continuous if and
only if (3) holds. Because we have

1i ii'd |2=1im”1‘§d a =1imiiglﬂezwih(x—-y)d x)dy(y)
}}Egloﬂ b H-—>olo=1 b &h H—»ooH‘h=1 050 g y y

- Slsl (ITIEL ii ZWih(x—Y)) dg(x) dg(y)= Sgdg(x)dg(x)
{(x,y) €[0,112: x—y €Z}

and the last integral is zero if and only if g is continuous. In particular, if (f(t))
has a continuous (M, A)-a. w. c. d. f. (mod 1), then (3) follows. Finally, suppose
that the limit (1) exists and that (3) holds. By the usual approximation methods,
it follows that the limit
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L(E)=lim

100 A(T, k)ST AWFUE})dt,

exists uniformly in k € [0, o) for every continuous function F on [0, 1] with F(0)
=F(1). If the space of these functions is equipped with the supremum norm, then
L is a bounded linear functional on it with L(F)=0 whenever F=0. Thus, by the
Riesz representation theorem

L ={ Feodgeo,

with a non-decresing function g on [0, 1]. Without loss of generality, we may
assume g(0)=0. Then, by choosing F=1, we obtained g(1)=1.
By what we have already shown, g(x) is continuous. We have

N .
lim —of k)S AOFUED) )dt= SF(x)dg(x)=L(F),

uniformly in k €[0, ) where g(x) is continuous.
By Theorem 1, the proof is completed. (qg.ed.).

Proof of 3. The existence of the limit (5) is necessary. Hence from Parseval’s
theorem and by the assumption, we have

2] @y B<l+oo,
vez

This proves the necessity. Next we have show the sufficiency. By Riesz-Fisher
theorem, there exists dg € L?(0, 1) such that

(7) S;e 2minsdg(x) =dta.

Since dg € L?(0, 1)CL(0, 1) has a Fourier series that is dominatedly convergent
almost everywhere, it follows, after correcting dg on a null set, that

(8) ‘ dg(x) =szne2’”"x for all x€ (0. 1).

From (7), (8) and by Lebesgue’s theorem on the derivative of integrals it follows
that g(x) is absolutely continuous and g’ €L?(0, 1). (qg.ed.).
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