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ABSTRACT. Let X, Y, and Z be three random variables with unknown
continuous cumulative distribution functions F, G, and H. D.R. Whitney?
proposed the (U,V) statistics as a bivariate extension of Wilcoxon’s U
statistic in 1951. Tt is well known that Whitney’s (U,V) tests based on
these statistics are particularly powerful against the following two types of
alternatives, respectively :

(1) F(t)>G(t) and F(t)>H() (for all t),

(2) G(t)>F(t)>H(t) (for all t).
A bivariate permutation (U,V) test that is an extension of Whitney’s (U,V)
test is proposed for samples in which observations are specified only by
intervals with known probability density functions. Here, the two
statistics, U and V, are based on generalized signs instead of ranks. The
proposed bivariate permutation (U,V) test is not rough even in small
samples, because the value of the generalized sign can take on real value
densely. In the same way, we can construct a multivariate permutation
test for many samples in which observations are specified only by
intervals. Computer programs were developed for determining the critical
region of (U,V) in a given sample of n, x’s, ny y’s and n; z’s.
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The statistical problem considered in this paper arises in biomedical
studies comparing several treatments, in which the observation for each
individual is specified only by an interval with a known probability density
function or by a membership function. This mainly occurs because there are
many biomedical fuzzy variates; for example, a blood pressure, the size of a
tumor, the incubation period and the period from a surgical operation to a
relapse of the disease.

We assume that (Xi,Xz,...,Xnz), (Y1,Y2....Yny), (Z1,Zs,...,Z,;) are
random samples from populations having the unknown continuous cumulative
distribution functions F(x), G(y), and H(z) respectively. In spite of the
assumption of continuity of the distribution function, sometimes tied observa-

cd.f. | sample size interval data

F(x) Ny X1z, X1v), (Xar, X2v), -+ »(Xner, Xnzv)
G(y) Ny Y1z, Y10), (Yor, Y20)s -+ (Ynyr, Ynyv)
H(z) ng (z1L, Z10), (Zor, Z20)s -+ s(Znars Znzv)
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tions will appear in practice, so they should not be excluded from the test.
We wish to test the hypothesis Ho: F=G=H against the alternative that
Al: F(t)>G(t) and F(t)>H(t) (for all t), or
A2: G(t)>F(t)>H() (for all t).
The test is conditional on the given overlapping pattern of observations. As
noted in our previous papers,>® we define the generalized sign of X;—Y; to be
U;; based on their interval data, (x.,X;v) and (yj.,y;v), and the generalized sign
of X;—Z, to be V. based on their interval data, (Xi1,X;v) and (Zar,Zzv), in the
following manner :

Us=EGen(X—Y)= [ [“sanx—y)si(s xu, xa)t(y; v, yw)dxdy,

Vik:E(sgn(Xi—Zk))Z/:w[wsgn(x—z)si(x; Xir, Xiv)Wr(Z; Zanr, Zpy)dxdz,

where s;(X; Xi, Xiv), ti(¥; Yir, Yiv), and Wx(Z; Zw, Zzy) are known probability
density functions of X;, Y, and Z., respectively, and are not related to F, G,
and H at all, and

1 if u>v,
sgn(u—v)= {0 if u=v,
—1 if u<v.

In the practical integration, we assume that

XU
s:(X;Xi, X)) =0 if x<x; or x>X;y, and K.L $: (XX, Xp)dx=1,
[

YU
t(y;yieyiw) =0 if y<yu or y>y,y, and ﬁjL ti(y;yi.ysv)dy =1,
ZRU
and Wg(z;zpr,220) =0 if z<zu or z>z,y, and - We(Z;Zrr,Zev)dz=1.

Therefore,
—1 if Xiygyj'L,
Uij: { +1 if yjyéxiL, .
a real number which is larger than —1
and less than +1 otherwise,
and
—1 if Xivu ngL,
V,'k: { +1 if ZkuéXiL,
a real number which is larger than —1
and less than +1 otherwise.

Then |U;| may be interpreted as the probability that X, is larger than Y,
if U;>0, and as the probability that Y; is larger than X; if U;<0. The same
may be said of V.

Now we calculate the statistic U=21>1U;, where the sum is over all
nz*n, comparisons of two samples, X aﬁdlY, and the statistic V=2>121V,

where the sum is over all nz*n, comparisons of two samples, X and Z. lIfkthere
is no overlapping in the interval data, it is easy to show that U=2-WU—n;*n,
and V=2-WV—n;*n; where WU and WV are Whitney’s (or Wilcoxon’s) U
and V, that is more concretely to say, the number of times a y precedes an x
and the number of times a z precedes an x in ascending order of the sample
values. Hence the proposed test is equivalent to Whitney’s test if there is no
overlapping in the interval data.
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As a critical region for the hypothesis Ho: F=G=H against the
alternative A;: F(t)>G(t), F(t)>H(t) we propose to use U=K,, V=K;; or
against the alternative A,: G(t)>F(t)>H(t), U=Ks, V=K, where the
constants K; are chosen to give the correct significance level. Even if the
significance level is fixed, the constants K; are not uniquely determined. A
reasonable principle to follow in this case would be to choose K; so that

P(USK,)=P(V=K,;) or P(UZK;3)=P(V=Ky)
according to which alternative is chosen.

Since the test statistics U and V are conditional on the given pattern of
observations and are not always integers, a convenient recurrence relation does
not hold, as is the case with Whitney’s (U,V) statistics regarding the number of
sequences of n; x’s, ny y’s and n; z’s in which a y precedes an x U times and
a z precedes an x V times in their ascending order. We must compute,
therefore, the probability value of the given data samples each time.

Moments of joint distribution of U and V

Now let’s consider the exact joint distribution of (U,V) under the null
hypothesis Ho. In spite of the assumption of continuity of the distribution
function, tied observations will appear in practice. It is true that these tied
observations are not exactly equal but the differences are very small. Therefore,
they should be handled separately. In accordance with the way of thinking, we
deal with any observation by its datum number. Thus, as the n individual
observations are labeled differently, there are n!/(ng!*ng!+n.!) possible alloca-
tions of the n observations to three samples with n, n,, and n. observations,
respectively, where n=n;+n,+n,. ~Under the null hypothesis Ho, these
n!/(nz!*ny!+n;!) possible allocations occur with the same probability and so we
can derive the conditional exact distribution of (U,V) by all the values of (U,
V) calculated for each of these allocations. Now we determine a critical region
for the hypothesis Ho so that USK,;, V=K, against the alternative A;: F>G,
F>H; or U=K;, V=K, against the alternative A,: G>F>H, where the
constants K; are chosen to give the correct significance level. In this case we
have to choose

P(USK;)=P(V=K;) or P(U=K;3)=P(V=K,)

according to which alternative is chosen. This is because even though the
value of P(U=Uo, V=Vo) is very small, both the values of P(U=Uo) and
P(V=Vo) are not always small, where Uo and Vo are the the value of U and
V for the observed data samples. And even if the value of P(U=Uo, V=Vo)
is very small, both the values of P(U=Uo) and P(V=Vo) are not always small.

When there is overlapping in interval data, we must calculate the means,
the variances of U, V and the correlation coefficient between U and V each
time. The conditional means and variances of U, V under Ho are denoted by
E(U|P, Ho), E(V|P, Ho), and ¥ (U|P, Ho), V(V|P, Ho), respectively, where P
is the overlapping pattern of the observed interval data. The expectations are
obtained by summing over all the n!/(n;!'n,!-n.!) equally likely samples
leading to the same observed pattern P.

It is easy to see

E(U|P, Ho)=0 and E(V|P, Ho)=0

by the symmetry of the allocation.

Then the variances and the correlation coefficient between U and V under
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Ho are given as follows: m
vV (U|P, Ho)=E(U|P, HO)ZZZZ}1 U(y/m,
V(V[P, Ho)=E(V[P, HoY’=3 Viy/m,
and =
Cov (U, V) m
= 2 U V/m/V(U|P,Ho)/V (V|P,Ho),
= T te) P VIPTiS & Ve Ve/m/ ¥ (UIR.HO)/ ¥ (V[P Ho)
where U, (V(y) is the value of U (V) for the /-th allocation sample, m=n!/
(ng!-ny!-ng!) and Cov(U,V) is the covariance between U and V.

SOME NUMERICAL STUDIES

We carried out the following numerical studies to confirm the relationship
between our proposed test and Whitney’s (U,V) test and to observe how the
depth of overlapping among interval data affects the constants K;.

The i-th interval datum is indicated by its midpoint and one half of its
length as follows: (t;+d;). For example, (35+2) implies the interval datum
(35—2, 35+2). Generally, a (t;+d;) implies an interval datum (t,—d;, t;+d;).

And {ti, ts..., t,} was composed of n=n;+n,+n, random numbers
sampled from a normal population with mean 50 and variance 102

When d;=0 or when d; (i=1, 2,..., n) are relatively small and so (t;—d;,
t;+d;) (i=1, 2,..., n) do not overlap with one another, our proposed test will
coincide with Whitney’s (U,V) test.

We are then interested in the hypothesis F=G=H under the alternative
G>F>H. In order not to make things unduly complicated, we will consider
that d;=d (i=1, 2,..., n) and assume that s(x), t(y), and ‘w(z) are all
distributed uniformly.

(1) Study 1

Twelve random numbers sampled from a normal population N(50, 10?)
were divided into 6 x’s, 3 y’s, and 3 z’s, so that the sequence of x, y, and z in
magnitude would coincide with the sequence yyxxxyxzxzzx in the Whitney’s
example, as shown in Table 1.

TABLE 1. Numerical data sample 1

sample size interval data
n;=6 (35+d), (44£d), (49%d), (51+d), (56+d), (65+d)
n,=3 (27+d), (32+d), (50+d)
n;=3 (52+d), (58+d), (60+d)
where d takes the value 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 5.0 in turn.

The results of our proposed exact test based on numerical data of sample
1 are shown in Table 2, where the significance level @ is held at almost 0.05.

(2) Study 2

Now thirteen random numbers sampled from a normal population N(50,
10%) were divided into 6 x’s, 4 y’s, and 3 z’s, so that the sequence of x, y, and
z in magnitude would coincide with the sequence yyxyxzxyxxzzx, as shown in
Table 3.

The results of our proposed exact test based on the numerical data of
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TABLE 2. The results of the test based on the numerical data of sample 1.

No.| d | p | Ks| Ky a | P(UzK;) | P(V=Ky | Uo Vo B
0|0 |3 6 |—6 |.0438 274 274 12 —10 |.0044
1 10513 6 |—6 |.0438 274 274 12 —10 [.0044
2 | 1.0].30215 |—5 |.0438 274 274 12 —9.75|.0037
3 | 1.5(.304| 43 | —4.3|.0485 287 287 12 —9.441.0031
4 |20 |.306| 4.3 | —4.3|.0499 .290 .290 11.94| —9.13|.0031
5 1251.307| 44 | —4.4|.0498 291 .290 11.84| —8.84(.0032
6 | 50 .314| 44 | —4.4|.0488 .286 .286 11.47| —8.25|.0036

where @ =P(Uz=Kj;, V=K,) and s=P(U=Uo, V=Vo), and p is the
correlation coefficient between U and V.

TABLE 3. Numerical data sample 2

sample size interval data
nz= (35£d), (44%d), (49+d), (51%d), (56+d), (65+d)
ny=4 (27+£4d), (32+4d), (42+d), (50+d)
n,=3 (48+d), (58+d), (60+d)
where d takes the value 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 5.0 in turn.

TABLE 4. The results of the test based on the numerical data of sample 2.

No.|d | p |Ks| Ki | @ |P(UZKs) |P(V=EKy) | Uo | Vo | g8
0|0 [.330|6 |—6 |.0468] 305 274 |16 | —6 |.0063
1 105|330|6 |—6 |.0468| .305 274 |16 | —6 |.0063
2 | 1.0|.332] 55| —50|.0468| .305 274 |16 | —6.25].0035
3 | 1.5].334] 54| —43|.0481] 301 287  |15.89| —6.33 |.0034
4 2033652 |—43].0478| 296 291 [15.69| —6.38 |.0035
5 1 25(.337]52|—43|.0499 297 299 [15.48| —6.36 |.0035
6 | 50(.345] 5.1 | —42|.0491| 297 298  [14.82| —6.21{.0035

where a =P(U=2Kj3, V=K,) and §=P(U=Uo, V=Vo), and p is the
correlation coefficient between U and V.

sample 2 are shown in Table 4.

THE RESULTS OF SOME NUMERICAL STUDIES

From Tables 2 and 4 the following conclusions can be made. It is clear
that if the value of d is zero or relatively small and the interval data do not
overlap with one another, the proposed bivariate permutation (U,V) test
perfectly coincides with Whitney’s (U,V) test, in accordance with our expecta-
tion. As the value of d increases gradually and overlapping of interval data
becomes greater, the critical region widens little by little and soon becomes
stable.

When the value of d is equal to or greater than 1.5, the critical region is
almost stable. Then the length of the interval data is equal to or greater than
0.3 times of the standard deviation of F, G, or H where its value is 10. For
example, when the value of d is 2.0; that is, the length of the interval data is
equal to 0.4 times of the standard deviation of F, G, or H, the critical region
of (U,V) is U=4.3 and V=—4.3 under the significance level @=0.05, from
Table 2. On the other hand, the critical region of (U,V) on the Whitney’s test
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is U=6 and V= —6 under about same significance level.

Therefore, the proposed bivariate permutation (U,V) test based on interval
data samples is more powerful than Whitney’s test based on medians samples,
when the length of the interval data is equal to or greater than 0.3 times of the
standard deviation of F, G, or H. About the same results can also be obtained
from Table 4.

Moreover, similar results were also obtained in the case where s(x), t(y),
and w(z) were all distributed normally in each interval.

Consequently, when an observation is fuzzy and not specified by an exact
value, we should specify it by an interval datum and not by its mean or
median based on its several observed values for each sample individual. The
proposed bivariate permutation (U,V) test should be applied to interval data
samples with enthusiasm.

REFERENCES

1) Whitney, D.R.: A bivariate extension of the U statistic. A.M.S. 22: 274-282, 1951

2) Kariya, T.: Estimated T test and F test with interval-censored normal data. Kawasaki
Med. J. 10: 197-206, 1984

3) Kariya, T.: Analogous t and F test statistics based on grouped data. Proceedings of the
Pacific Statistical Congress-1985. Elsevier Science Publishers B.V. (North-Holland) : 275
-279, 1986

4) Kariya, T.: A generalized sign test based on paired interval data. The Second
Japan-China Symposium on Statistics : 125-128, 1986




