マウス嗅粘膜における出生前後の嗅腺の発達
—透過電顕による観察—

増田 明巳

胎生後期から生後早期における嗅腺の発達を超微形態レベルで明らかにするため、胎生17日、生後0日および6日マウス嗅粘膜を、透過電子顕微鏡で観察した。嗅腺分泌細胞における分泌顆粒の形成は胎子において見られず、生後0日に形成され、生後6日までの生後早期において著しい。顆粒内部の電子密度が明暗から明調に変化するとともに、顆粒は大型化し、融合して腺胞に向けて開口分泌される。この嗅腺分泌活動の変化に対応して、導管構造にも生後早期に変化が著しい。導管内腔には微細毛が密在し、生後0日では上皮は立方柱状で内腔はせまいが、生後6日で著しく拡張し、導管上皮細胞も扁平となる。嗅腺分泌活動は胎生期ではなく、出生直後から生後早期に急速に発達することが超微形態レベルで明らかになった。

Development of the Olfactory Glands in Fetal and Neonatal Mice
—An Electron Microscopic Observation.

Katsumi MASUDA

To clarify the development of the olfactory glands at the ultrastructural level, the olfactory mucosae of ICR-mice were examined at 17 days of gestation, at birth and at six days after birth by transmission electron microscopy. The formation of secretory granules in the secretory cells could not be identified until birth. At birth, a small number of secretory granules, appeared and then a marked increase in their number occurred between 0 and six days. Secretory cells at birth contained small granules of high electron density, but, at six days, their electron density had become low. Enlarged granules became fused with neighboring granules, and the contents of apically situated granules were extruded from the cells by exocytosis. The acinus lumen became enlarged at six days after birth. The ducts of the olfactory glands in fetuses had numerous microvilli, and the lumen was very narrow, although, it expanded markedly after birth. In addition, duct epithelial cells, cuboidal during the fetal period, became flattened in neonates. Ultrastructurally, the secretion activity of the olfactory glands showed a marked increase, especially during the neonatal period. (Accepted on September 13, 2005) Kawasaki Igakkaiishi ;31(3) ;127–135, 2005

Key Words ¹ Olfactory gland ２ Electromicroscopic observation ³ Development ４ Mouse
はじめに

周知のように、ヒトを含む哺乳類の鼻腔は呼吸粘膜と嗅粘膜から構成され、嗅粘膜は特殊感受覚の受容組織として、嗅い遠上皮と嗅粘膜固有層からなる1), 2)。気道の加温、加湿に関与する呼吸部粘膜の鼻腔とは異なり、嗅粘膜固有層に存在する嗅腺は嗅覚の受容に関与するとされる3) 4)。マウスにおいて嗅粘膜上皮は、胎生の早期より形成が始まり、嗅小脳や嗅毛など特異な形態を有する組織構造は胎生後期までに急速に発達する5) 6)。しかしながら、嗅粘膜固有層に存在する嗅腺は前報7)で明らかにしたように、胎子においては未発達の状態であり、出生後において急激にその数が増加するという特徴がある。今後、出生前後における嗅腺数の急激な増加に対応する組織構造の超微構造レベルでの変化に関して、報告は少なさ。今回我々は、出産前、出生直後から2週に至る新生子マウスの嗅覚の変化を電子顕微鏡レベルで比較検討した。

材料と方法

動物は恒温条件下（22±2℃）で飼育したICRマウスで、胎生17日（5例）、生後3日（9例）および生後6日（8例）で、計22例を使用した。固定剤（NMP、オエリアント棒モザック）と生理食塩水で飼育した成年雄性マウスを一晩雄性マウスと交配し、嗅覚を確認し翌朝を妊娠0日とした。所定の妊娠日数でエチルにて麻酔後開腹し、子宮より胎子を摘出し、頭部を切断した。切断した頭部から鼻腔上部を含む部位を切り出し、カルノフスキー液（4%パラフォルムアルデヒド・5%グルタルアルデヒド混合液、0.1Mカドジアルカリトリアミン緩衝液、pH 7.4）に浸漬して3時間、4℃にて前固定した。次いで1%四酸化オスミウムにて2時間、4℃にて後固定を行い、アルコール系列にて脱水後、エボン812に包埋した。新生子マウスはエチルによる深麻酔後飼育し、同じ方法でエボンに包埋した。包埋後、1μmの超薄切片を作成、toluidine blue液で染色し、嗅粘膜の存在を光学顕微鏡下で確認した。ついで嗅粘膜部ならびに呼吸部粘膜の約100μm厚の超薄切片をウルトラカットS（Leica, AG, Weih, Austria）を用いて作成し、フォルマルパール液で染色した単孔メッシュに載せ、酢酸ウランとクエン酸鉛による二重電子染色を行った後に、日立H-7100型電子顕微鏡で加速電圧75KVにて観察した。

なお、本研究は川崎医科大学動物実験委員会承認（NO.04-074, 2004）のもと、川崎医科大学動物実験指導に基づいて実施した。

結果

鼻腔後部は広く存在する嗅粘膜により、鼻腔と接する約80μmの歯状鼻腔皮とそれ下部の粘膜固有層に大きく分けられ、鼻腔導管は鼻上皮内、分泌部は固有層内に分布する。嗅腺分泌部は短管状で、粘膜固有層内で血管や神経細纖維間で観察できる。胎子の嗅腺は数が少なく、未発達であるが、生後6日では、嗅腺分泌部は固有層深部に向かって深く伸展し、明確な神経纖維の間で遮断する（Fig. 1a）。分泌細胞の多くは約10μmの長方形あるいは立方状を呈し、大型の核を有し、細胞を強固に包む細胞質には分泌顆粒が観察できる（Fig. 1b）。一方、嗅粘膜以外の鼻腔粘膜の固有層下には、胎生期より混合腺である鼻腺が多数観察される（Fig. 1c）。

分泌細胞は上皮内の導管に連続する。嗅腺分泌細胞は胎生期と生後早期、特に新生生を含えて、分泌顆粒の数が著しく増加し、分泌細胞超微構造にも著しい変化が認められる。
A. 嘴腺の超微形態観察

1. 分泌部

a) 胎生17日

嘴腺分泌部はほぼ橁円形を呈し、その中央には拡大腺腔が認められる。腺腔に面する腺細胞表面より長さ約 1 μm の微絨毛が認められ、腺腔内は微絨毛によってはは溝が存在されている (Fig. 2a)。腺細胞は約 10 μm 大の立方状を呈する。直径約 7 μm の大型の球形核には核膜に接し数個の核小体が観察できる。細胞質にはミトコンドリアや線面小胞体が散在し、その間に自由リボソームが分布する。リボソームはポリソームを形成することが多い。分泌顆粒はほとんど観察されない。また、隣接する嘴腺分泌細胞間にはデスモソームなど細胞間連絡装置が存在するが、主として腺腔近傍のみ限局し、細胞基底侧にはほとんど観察されない (Fig. 2b)。

b) 生後 0 日

腺分泌部の多くは胎生期同様、橁円形の断面を呈する。一部に腺有層内を迂曲蛇行して伸展する分泌部も観察される (Fig. 3a)。分泌部の内腔は生後 0 日において著しく拡大し、腺腔内には、分泌細胞腺腔面から突出する長さ 1 μm 以下の微絨毛が多数存在する。細胞質にはミトコンドリアや粗面小胞体が広がり、Golgi 装置が胎生期に比べて発達するほか、リボソームがポリソームを形成し、あるいは粗面小胞体としても発達する。直径 0.5～1 μm 大の球形あるいは橁円形の分泌顆粒が、腺腔近傍の細胞質に少数観察されるようになる。顆粒はその全体が均一に発達する。隣接する分泌細胞間には、連絡装置が腺房近傍に限局し、多数存在する (Fig. 3b)。

c) 生後 6 日

固有層内の分泌部は、固有層深部に向かって
Fig. 2. 胎子の鼻腔の透過電顕写真。胎生17日。
a) 嗅腺分泌部。嗅上皮（OE）下の固有層（LP）に椭円形（点線）を呈する嗅腺分泌部が観察される。V：血管。Bar = 5 μm。
b) 嗅腺分泌細胞（a の図）の拡大写真。核（N）は明るく、よく発達した核小体（NL）を含む。分泌顆粒は細胞質内に殆ど観察されない。腺腔（目盛印）には多数の微細毛が観られる。J: 細胞間連絡装置。M: ミトコンドリア。Bar = 2 μm。

Fig. 3. 生後6日の鼻腔の透過電顕写真。
a) 嗅腺分泌部。嗅上皮（OE）下に固有層（LP）内に腺胞（*）のやや拡大した分泌部が観られる。Bar = 5 μm。
b) 細胞壁（a の図）の拡大写真。細胞質内には暗調な分泌顆粒が観察される（Gr）、ミトコンドリア（M）が増加し、ゴルジ装置（Go）が発達する。腺胞（*）へと腺細胞の微細毛が伸びる。J: 細胞間連絡装置。Bar = 1 μm。
進曲伸展する。分泌部は固有層内の神経線維束間で、格円状の分泌部を多数とし、不整形を呈するものが少数を占めるようになる。分泌部の進曲伸展に伴って、内腔も著しく拡大する（Fig. 4a）。分泌顆粒は細胞内の腺体側に観察されるが、その数は出生早期のものに比較して著しく増加し（Fig. 4b）、その内容は暗調ならびに明調とその電子密度に変化が見られる。なかには有核状を呈する顆粒も存在する。直径は 0.5～1 µm まで、多くは 0.6～0.8 µm 大である。これらの分泌顆粒は互いに融合・増大し、分泌腺腔内に開口分泌される（Fig. 4c）。細胞質には分泌顆粒の他にリポソームがリポソームや粗面小胞体を形成して発達し、ミトコンドリアも多数存在する。接接する分泌細胞間には胎生期、出生期と同様に連続装置が主に腺体近傍側に観察される。

喉頭粘膜の超微細胞レベルの変化を Fig. 5 に模式的に示す。

2. 導管部

胎生17日、生後0日の疎上皮では、固有層の分泌部から連続して疎上皮に導管が観察される。導管上皮細胞は大型の格円形の核を有し、上皮細胞の低い長方形を呈する（Fig. 6a）。細胞の導管腔側には、分泌部細胞と同様に、長さ約 1 µm の微細毛が多く見られ、管腔内を満たしている（Fig. 6b, c）。細胞表面の微細毛間には微細小胞も認められる（Fig. 6c）。

生後6日の導管管腔は出生早期の管腔に比べて著しく拡張する（Fig. 7a）。個々の導管上皮細胞は、出生早期の疎上皮細胞と同様に大型格円状の核を有するが、細胞質は扁平化する（Fig. 7b）。また、管腔内に微細毛を出すが、その密度は出生後早期の細胞と比較して減少する。

B. 鼻腺分泌細胞の超微形態

生後0日の鼻腔壁における鼻腺では、粘液分泌細胞が塩液分泌細胞に比べてよく発達する。粘液分泌細胞では核が基底側に偏在し、粘液顆粒を大量に含有する。粘液顆粒は直径 1～3 µm で、1.4～1.6 µm 径が多く、腺腺細胞の顆粒の 2～2.5 倍の大きさであった。顆粒内容は明調－暗調が混在し、中には有核状を呈するものも出生直後の時点で観察される。

Fig. 4. 生後6日の喉頭の透過電顕写真。
a) 喉頭分泌細胞、固有層（LP）内を進曲伸展する。分泌部から連続して、導管（D）が疎上皮（OE）内を貫く。*: 腺体。Bar = 5 µm。
b) 喉頭分泌細胞（a の図部）の拡大写真。腺腺（**) 側の細胞頂部には多数の分泌顆粒（Gr）や微細毛が観察できる。腺腺は拡大する。Bar = 2 µm。
c) 分泌顆粒（Gr）の拡大写真（b の図部）。接触顆粒が融合し（矢頭）。その内容は明調となり、一部に有核状核状も観察される。
M: ミトコンドリア。Bar = 1 µm。
Fig. 5 睫腺細胞の超微形態模式図
a) 胎生期の睫毛細胞。ミトコンドリア（M）を含み、分泌顆粒は殆ど観察されない。腺管（＊）に微細毛を出す。
J：細胞間連絡装置。N：核。NL：核小体。矢印：微細作用。
b) 新生子期の睫毛細胞。出生後には腺管近傍の細胞質に分泌顆粒（Gr）が多数出現し、腺管へと開口分泌（☆）される。
Go：ゴルジ装置。M：ミトコンドリア。N：核。NL：核小体。矢頭：細胞間連絡装置。
考察

結果に示したように、嗅腺においてマウスの胎子と新生子期では、出生を挟んで、腺房を構成する分泌細胞ならびにその導管と上皮細胞に、細胞形態レベルで著しい変化を確認する事ができた。腺腔の分泌細胞における著明な変化は、細胞質内の分泌顆粒数と顆粒内容にみるとることができる。分泌顆粒の形成は胎子期では不明瞭であるが、生後0日目の嗅腺細胞ですでに観察できる。しかし、その数は胎生期から出生までの期間と生後0日と6日の期間で比較すると、生後早期に極めて著しい。細胞に含まれる顆粒数のみならず、顆粒内容においても、生後0日と生後6日の間の変化が著明である。すなわち、顆粒内容は暗調から明調へと電子密度が急速に変化すると同時に、隣接する顆粒が疎合したり、腺腔の近傍において顆粒の開口部を明瞭となる。このような腺細胞の分泌活動の活発化に呼応して、鼻腔内壁へと連続する導管にも変化を生じる。すなわち胎生期や生後0日ではごく狭い内腔しか持たない導管が、生後6日ではその内腔が著しく拡張を示し、導管上皮細胞も立方状から一気に扁平化する。これらの所見は腺腔の分泌物が腺腔内に貯留するのみならず、導管へ流出を始める形態学的な証左である。

前報の報告のように、胎生期から生後早期にかけて腺腔分泌細胞数の著しい増加を光学顕微鏡レベルで観察できる。その変化は胎生19日と生後0日との間で著しく、この観点から、我々は呼吸の開始が腺腔分泌細胞数の増加に密接に関与している可能性を考えた。今回の観察で、出生直後の腺細胞が分泌顆粒の産生を開始する事は明らかになったが、分泌顆粒の数や顆粒の性状の変化は出生直後に急速に起こるので
はなく、それよりやや遅れて生後早期に分泌細胞内に顆粒が増加し、同時に顆粒の性状も変化することが明らかになった。すなわち、前報で示した細胞数の変化と今回の分泌顆粒の変化の間には、時間的な差異が認められる。これが何に起因するかは今後の検討課題であるが、腺の分泌活動の開始は、前報で推察した出生直後よりも時間的にやや遅れる可能性が考えられる。成績に述べたように、鼻腔呼吸粘膜の鼻腔において、とくに粘液腺は出生直後でさえも多数の粘液顆粒を含み、出生直後から活発な分泌活動が認められる。従って、鼻腔内の二つの異なる腺、すなわち嗅腺と鼻腺では、その発達に影響する因子は今回の観察からも全く異なると考えられる。

腺の分泌細胞や導管上皮細胞の管腔側には多数の微細毛が存在することはすでに知られている。今回の観察でも、微細毛が分泌顆粒の形成前より認められることが明らかになった。腺の分泌細胞や導管上皮細胞に関連する免疫組織学的に検討した報告は、腺の分泌細胞と導管上皮細胞にはイオンポンプやイオン交換輸送体が存在し、微細毛は小腸上皮や腎臓細胞上皮に似ていると考えられている。微細毛は小腸上皮や腎臓細胞上皮によく発達し、一般に吸収に関連する細小構造である。腺の分泌細胞や導管細胞の微細毛がよく見られることは、これらの部位で吸収機能が可能であることを示唆し、微細毛の機能的意義を検討する必要がある。

謝辞

稿を終えるにあたり、終始親切な御指導を頂いた
参考文献

5) 森幸威: マウス嗅粘膜発生と嗅上皮における細胞死の組織学的観察. 産経医会誌. 25: 211-221, 1999
6) 森幸威: マウス胎子における嗅上皮の発達-磁性電眼による観察. 産経医会誌. 26: 211-221, 2000
7) 増田賢吾: マウス嗅粘膜における嗅腺の発達-計量組織学的観察-. 産経医会誌. 30: 11-19, 2004