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Abstract

In practice, samples from continuous distributions are often grouped. This means that
we are not given the individual observations, but only the number of observations falling
into certain specified intervals. In such a case the estimation of parameters is usually per-
formed by the method of maximum likelihood based on grouped data. However, there are
other estimation procedures, say, the chi-squares minimum method, the modified chi-
squares method and the method of least squares. These methods are based on comparing the
specified grouped distribution with its observed grouped distribution, or comparing the
specified cumulative distribution function with its sample analogue, the empirical distribu-
tion function.

The method of weighted least squares which we shall propose in this paper is of the
same kind as those ones. However, this method is sensitive to discrepancies at the tails of
the distibution rather than near the median, because we would equalize the sampling error
over the entire range by weighting the deviation by the reciprocal of the standard deviation.
Therefore it will be expected that this method is effective for the parameter estimation pro-
blems in the mixed distribution composed of heterogeneous distributions to which the method
of maximum likelihood is not applicable.

At first we shall formulate the problem and we shall give the existence theorem of
an optimal solution for the weighted least squares problem. And then we shall compare
the weighted least squares estimates with the estimates by the method of maximum like-

lihood based on individual observations.

§1. The Formulation of the Problem

Let F(x 5 6) denote a distribution function of known mathematical form, con-
taining unknown parameter 6, and suppose we have a random sample of size #
from the corresponding population. We assume that we are not given the indi-
vidual observations, but only the empirical distribution function

_ no. of sample value<x;,
n

»

Ve

where (x;} is a sequence of m real numbers such as —oodx1<(x9{. . .{¥m{+o0. Then
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Y1, ..., 9m satisfy the relation: 0<y»<ye<...<yn=1. For a given value of g,
y is a binomial variable; it is distributed in the same way as the proportion of
successes in # trials, where the probability of success is F(x; 6). Thus, E[y]=
F(x;6) and V[yl={1/n)F(x;0)(1—F(x;6)). In order to equalize the sampling
error over the entire range of x, we will weight the deviation by the reciprocal
of the standard deviation; that is, we use

w(x)=n/(F(x;0)(1—F(x;6)))

as a weight function.
We define the function Q(8) as follows ;

_ & . _ o n(F(x 5 0) —y)?
Q<0)=52_1' w(xt) (F(xt ’ 0) —yi)z— 5=21F(x5 ; 0)21—}7‘(.76:; 0)) .

It seems natural to attempt to determine a best value of parameter 6 so as to
render Q(0) as small as possible. This is called a weighted least squares esti-
mation method.
Then we consider the following extremum problem ;

(1) Choose an estimate #¢® so that # minimizes Q(f) for the given values of
(J1,...,¥m). To simplify the exposition, let ® denote the upper-half plane in the
2-dimensional space R?, that is, @={=(u, ¢) eR?; —oolul{+o0 and ¢>0} and let
F(x; 0) denote the normal distribution function ;

F(x; 0)=7§17;—68 exp(— (s—u)?/(202))ds.

Now we shall prove the existence theorem of an optimal solution of- the
problem (1).

§2. Preliminary Inequalities

We shall give three inequalities which are elementary but very important.
We have ’

Lemma 1. Let {a} and {6} be sets of m real numbers and let 5<b<...<

bm and put r=max{i ; bi=b1}. If éch:o and é—m“_;: a:=0 for each E(r+1=k<m), then
(2) S aibi20.
i

In particular, the strict inequality holds in (2) if ‘:’.2".101>0 and by,—b1>0.

Proof. Let us put A=§1 aibs. It follows from gaz:O that
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m m m
A= E aib; — 2 aibl = 2 a; (bi—bl)
i=2 i=2 t=2 ‘
m-2
=¢§10i(bi—bl) + am-1(0m-1—01) -+ @ (bm— 01).
Since @m=0 and bp—b1=b,-1—b1=0 we obtain
m-2
Ag‘=§lai(bi_b1) + (@m-1+ @) (b-1—b1).
It is easily seen by the same arguement as above that
m-3
Az‘_glai(bz—b1) + (@m-2+ -1+ am) (bm-2—b1).
By repeating this process we have
(3) AZ( 52 a) (bra—b0)20.

Our assertion follows from (3).

Corollary 1. Let {a:} and {b:} be increasing sequences of m real numbers.
Then

(4) m3abi=( S a) (3.
=1 =1 =1
In particular, the strict inequality holds in (4) if @n—a1>>0 and bm— b;>>0.
Proof. Let r be the same as in Lemma 1 and put ch=(§1.‘ ai)/k (1=k<m) and

m
a/'=ai—cC¢n. Then a/'<a/<...<a, and ¢_>_.1‘a¢’=0. It can be easily shown that

a=ci' (1I=k=k'=m) and that ¢;<cm if #<<m and ax—a;>>0. For each k(r+ 1=k<m)
we have ﬁ‘kdil:(k_l) (em—Cx-1)=0.

We have from Lemma 1

3

(5) . ai'b:=0,

o
I

which leads to (4). If-@n—a>0 and b,—b:>0, then‘_ﬁlai’>0, so that the strict
inequality holds in (5) (or equivalently(4)) by Lemma 1.
Corollary 2. Let {a:}, {6:} and {cs} be increasing sequences of m real numbers

and let ‘_i'l“ b:>0. Assume that ai=ay if and only if bi=by If (ai—ay)/(bi—bj)=
(:2__101)/ (f_;‘bi) for every 7 and j such as bib,, then

m m mooo . m ‘
(6) (gai)(gbici)é(%am)(g bs).

In particular, the strict inequality holds in (6) if cn—c1>0 and there exist i and
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j such that bistb; and (ai—az)/(bi—by)>( % ai)/(é"l: bo).

Proof. We put a‘=§.—1‘ ai, b= :Sibz and K=b% aici — a%bi(/'i- Setting di=ab

—ab;, we obtain
m m
K= > ¢id: and > di=0.
= =1
© For 1=<j<m, we have
dj_di":b(dj_ai)_a(bj—bi),

so that di=<d, by our assumption. By Corollary 1 we get mK=( g(«‘i)(é d:) =0,

hence K=0. If there exist i and j(i<<j) such that bi¢b; and (@i—ay)/(bi—bp)>
a/b, then di<dj so that K>0 by Corollary .1.

§ 3. Existence Theorem

Let F(8) denote the row vector with components F(x; 3 #). Note that the image
F(®) of ® under F is a bounded subset of m-dimensional Euclidean space R™.

We define a subset 8F(®) of R™ as follows : point ze R™ belongs to 0F(®) if
and if only z¢ F(®) and there exists a sequence {f,} in 6 such that F(8,)—z as
‘n—oo. Let Li(1=i<m) denote the line segment {z=(21, 22,...,2m) € R™; 25=0 (<<
1), 0=2:<1 and z;=1(:<j)} and let L, denote the line segment {z2=(21,29...,2mn) €
R™ z1=29=... =2y, and 0=z1=1!.

We prove

Thorem 1. 0F(®) = ?_Ja Li.

Proof. We put L = Qa L:;. We shall show at first that LCOF(®). We put ¢(x,

0)=(x—mu)/o and #:(6)=t(x:, ) for 8=(p, o) and xe R. And for a fixed 6@ we
put Wo(@)=0'c®; F(x; 6) =F(x:;0))=(0" = (&, ) e®; p=x—1(x, )d’}. Note
that

t(x,0)
7 t:(0)=t(x, 0)+ (x:—x) /o for all ¢ and F(x; 6) =on exp(—s2/2) ds.

Let z2=(21, 22, ..., 2n) € Leg(1=k<m). Then z:=00<k), 0=z=1 and z:=1(k<i).
In case that z,=0, taking xe¢ R such as x;<<#<4z+1, we have from (7) that
t:1(6,)—>—o0 as n—oo for each i(i<k) and #:(6,)—>00 as n—oo for each i(i>k),
hence F(f.)—z as n—oo for any sequence {f,' in W,(8) such that 6,—(x, 0) as
n—oo. Since F(®)NL=¢, we have 2e 0F(®). In case that z=1, taking xe R such
that x;-1<<x<x:, we have from (7) that

t:(0,)—>—o0 as n—oo for each i(i<{k) and #:(f,)—>cc as n—oo for each i(1=k),

hence F(8,)—z as n—>> for any sequence {f,' in W,() such that 6,—(x, 0) as
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n—o0, Thus z2e0F(®@). In case that 0<{z;<{l, there exists ,¢® such that F(x ;
0,) =2z, It follows from (7) that

t:(0,)——o0 as n—oo for each ((:<k) and #(6,)—oc as n—oo for each :(z>k),
hence F(6,)—z as n—oo for any sequence {f,' in Wx,(6,) such that 6,—(x, 0) as
n—oo, Thus ze 0F(®). Finally we consider the case that z=(z1, 29,..., 2m) € Lo.
In case that z;=0 or 1, we have shown préviously that ze 8(®), so that we may
as sume that 0<z;<{1. Then there exists 8, e ® such that F(x1; 8,)=z;. It follows
from (7) that

t(6,)—11(6,) as n—oo for all i,

hence F(6,)—z as n—co for any sequence {0, in Wy, (8,) such that s,—o0 as n—
oo, where 0,= (s, 0,). Thus z2edF(®). Next we shall establish the converse in-
clusion. Let ze@F(®). Then there exists a sequence {6, in ® such that F(6,)
—z as n—oo and ze F(®). This implies that the sequence !6,} has no cluster point
in ®. Consider m sequences {#:(6,)'. Suppose first that one of these sequences
has a convergent subsequence with a finite limit. Without loss of generality we
may assume that {#;(6,)} has a finite limit. We put 6,=(u, d,). It can be easily
seen that lim ¢,=0 or oo. In case that lime,=o0, we can choose a subsequence

n—oo n—>oo
{0} by (7) such that lim #:(6,) = lim ¢,(6,’) for all 7, so that ze L,. In case that
n’—co n’—>co
lim ¢,=0, we can find a subsequence {8,} by (7) such that lim #:((6") = —o00 (<)
n’—oo

n—>oco

and liinwti(anf)=m( j<i), so that ze L, In both cases ze L. Secondly we assume
that rleach sequence {#:(6,)} has no convergent subsequence with a finite limit. The
each sequence has a subsequence which converges to —oo or oo, If {#(6,)} has
a subsequence {64} such that nh_l}}o #1(@w) =00, 2=(1,1,...,1) ¢ L. Thus we may
assume that {#1(6,)} converges to —oo. If {f2(f,)} has a subsequence which con-
verges to oo, then we can find a subsequence {6,} by (7) such that n11_r»ri0 ti(0,) =
oo for-all 1(7=2), so that z=(0,1,1,...,1) e Ls. Hence we may assume that {#2(6,)}
converges to —oo, By repeating this argument, finaly we may assume that all
{t:(6n)} converge to —oco. In this case we have z=(0,0,...,0) € L,. This com-
pletes the proof.

By this theorem we can determine the boundary value of Q(6). Hereafter we
regard Q(8)/n as Q).

Lemma 2. Assume that there exist 7 and j such that 0<y+<{9;<1. Then

}H{i Q(On) =00

for any sequence {#,! in @ such that 1111_12 F(6,) e0F(@®)—L,.

Proof. We have by definition

QO ZLF(%i 3 0n) 1 —F(xi 35 0,)) U (F(Xi5 0n) —yi)2
+[F(x55 0,) (1—=F (255 02)) 1T F (555 0n) — 5%,
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where {6,} is the sequence in @ such that lim F(6,) e 9F(®)—L,. There exists Ly
(1=k=m) such that lim F(0,)=(a1, as,...an) € Ly by Theorem 1, so that either

F(%i5 0n)(1—F(%x:5 05)) or F(xy5 0,)(1—F(xy5 6,)) converges to 0 as n—co. Since
0<y:<9;<1, we have

either (ai—»:)2>0 or (a;—y5%>0,

so that Q(6,)—c0 as n—>co, ,
Let us define functions Q1) and f(4) on (0,1) as follows :

Q=[A(1—2)]1 %1 (A—32)? and fD)=(m—2 gyomz(;fg TSP

We obtain

Proposition 1.. Assume that 0<{y:<1 for some i. Then there exists a unique
value 2* of 1 minimizing Q(1) over (0, 1). Moreover A* is a solution of the equa-
tion f(2)=0.

Proof. Note that Q) =[2(1—2A)]1(A—y:)2—>c0 as 1—0 or i—~1. By the continui-
ty of Q(2) we can find A*.in (0, 1) which minimizes Q(2) over (0, 1). Therefore
the derivative Q' (4*) of Q(1) at A* vanishes. It is easily seen that 0=Q'(1*)
=[2*(1—2%)]2f(2*), so that f(1*)=0. Assume that A’ e (0, 1) mininizes Q1) over
(0,1). Then f(A)=0. Since the equation f(A)=0 has only one solution in (0, 1),
we have A'=1*,

Lemma 3. Let 2* be a solution of f(A) =!0 and let ¥ be the mean value of {y:}.
Then
(i) A*<1/2 if and only if y>1/2.

(ii) A*=1/2 if and only if y=1/2.
(iii) A*>1/2 if and only if y>1/2.

Proof. Setting Y= in‘l y:2, we see that

S =m(1—2y)A2+2Y2—Y, so that f(1/2)=m(1—2y)/4. Thus we can easily
prove (i), (i) and ({ii).

Let 2¢ (0, 1) and let 071 be the inverse function of the standard normal dis-
tribution function. For any real number x, denote by Di(x) the half-line in @
with inclination— (#-1(2)) ! through the point (x, 0), i.e.,

Di(x)={0=(z, 0) €@ ; u=x—01(Do}.
We set

Ai(x)=(x—2x) (1——2}&;), Bi(x)=(x—x:)y:2, gQ)=[A1—-AD]2exp(—(01(1))2/2) and
(8) GG, x)=g(2) g:l[Ai(x>12+235(x)x—3i(x>j.

Let P(6) be an arbitrary real-valued function defined on ®. For 6= (ﬂ, o) e Di(%),
denote P)’'(0) the directional derivative of P(#) at 6§ along the half-line Di(x), i.e.,
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P/ (6)=lim (P(6") —P(6))/(o'—0)
0'=(y, o') e Di(x)

if the right side of the above exists.
We obtain

Lemma 4. lim o2Qi'(0) =(2r) 12G(4, x).

Proof. We set h(0)=F(x:56) and ¢(8)=[h(6)(1—r(0)]1(h(6)—y:)% By the
relation

B (0) =L(x—x:)/( V2m 0 ] exp(—1:(6)%/2),
we have
(9) g (0) =L(x—x:)/( V2m %) JLexp(—2:(6)%/2) JLh(6) (1—1(6))]7?
(h(0) —y:) (h(0) +yi—2y:h(6)).
Noting that
t:(0)?=[(xi—x)/o+071(X) 2> (071(2))? as g—>o0,

we have
(10) o2k’ (0)—>[(x—x:)/ V2r]exp[— (071(2))%/2] as o—>c0
and
1 -1 2
(11 h(ﬁ)—»T*Z—n_ exp(—s2/2)ds=1 as o—>oco.

It follows from (9), (10) and (11) that
lim 62Q2' (8) =(2r)"12G(4, x). This completes the proof.

Lemma 5. Let A* be a solution of f(A)=0 and assume that there exist ; and
7 such that 0<<y:<y;<1. Then G(A*, x) is positive, i.e., G(A*, x)>0.

Proof. Setting a=‘%(1—2yi), b=§1‘,yi2, c= :21 2:(1—2y;) and d=‘§=‘ixiy1~2, we have
FO*)=a(A*)24+2b2%—b=0 and GA*, x)=xg(A*)f(*) —g(A*)[c(A*)2+242*—d],
so that
—aGQ*, x)=g(*)(ad—bc) (22*—1)
or
(12) m(2y—1) G(A*,x) =g (A*) (ad—bc) (24*—1)

where y is the mean value of {y:;}. We show first that K=ad—bc is strictly posi-
tive. Putting @:=2y:—1 and b:=y.2, we have

E=( 3 aix) (36 — (S a) (3 bixs).
¢=1 i=1 i=1 =

We have only to verify that {a:}, {#:} and {x:} satisfy the conditions of Corollary
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2 of Lemma 1. It is clear by our assumption that ;i<a@e=<...Zan, 01=b=<...Zbn,
?:i;bi>0 and a:i=ay if and only if b;=b; In case that bis%b; we put U=(ai—ay/
(bi—by)=2/(y:i+y5 (>0) and V=(‘:3L'_L‘1J ai)/(g‘.lbi)=m(2§—1)/b. It is clear that V>U

if y<1/2. If 3>1/2, then it can be shown that »2/(2y—1)>1. We have by Schw-
arz’s inequality y2<b/m, so that y2/(2y—1)=<b/[m(2y—1)]. Therefore m(2y—1)b<1.
Since yi#yj it follows that y:+y;<2, so that V>U. Thus K>0. Next we shall
prove that G(A*, x)>0. Since g(4*)>0, by the aid of Lemma 3 and (12) we con-
clude that GU*, x)>0 if y5£1/2. We consider the case that y=1/2. Then 2*=1/2,
so that G(1/2, x)=—g(1/2)c/4. We can show that c<{0 by Corollary 1 of Lemma
1. This completes the proof.
Now we are ready for the main theorem.

Theorem 2. Assume that there exist i and j such as 0<y:<{y;<l. Then the
problem (1) has an optimal solution.

Proof. Let 2* be a solution of f(A)=0. It follows from Lemma 4 and Lemma
5 that

Q+(6)>0 for sufficiently large o.

This implies that there exists 6, e Dix(x) such as @(8,)<{Q(A*), since Q(8)—Q(*)
as o—oco whenever f=(g, o) e Da(x) We put S={0e¢@; Q(H=Q(f.)}. Let (A}
be any sequence in S and suppose that {6,} has no cluster point in S, that is, in
®. We can find a subsequence {6} of {6, such that F(6.)—zec0F(®) as n'—oo
(see the proof of Theorem 1). Thus ,}151;10 Q(02)=Q(2*¥), so that Q(0,)=Q(A*). This

is a contradiction. Therefore all cluster points of {8,} belong to S, so that S is a
compact set in ®. By the continuity of Q(8) we conclude that there exists §* ¢ ®
such that Q(6*)=min{Q(6); 0@ .

§4. Practical Estimation Procedure

It has been proved that there exists an optimal solution for the problem (1).
In order to find an optimal solution §, we have to solve the equations 0Q/9x=0,
0Q/002=0. But these equations are so complicated that an iterative method must
be used to find an optimal solution, starting from some initial value. To simplify
the calculations we shall regard the denominator in (@) as constant when dif-
ferentiating, and shall assume in addition that the F(x: 5 #,-+24, 6,2+202) are linear
functions of sz and 262 Under these assutions, substituting s#=pg,+24, d2=g,2+ s0?
for 0Q/0u=0 and 0Q/0s*=0 gives

m 1 m m
(Emw&) opt g (X WiotioPh) 502=0, 2 wiopio(F (15 oy 055) =),
(13) -
m m m
(leiatiaq)?o) Au+2—12—(2 Wiolhho) 80%=04 2 WiotioPio (F (%1} to, 067) — i),
=1 0o” ¢=1 ¢=1
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_ 1,
2

tlo
1 1
where ti,=(%:i— ) /G0, (oio=—\/%‘ exp( >, Wip= (05, (1—0s,)7L, wia=—‘/—2-; S exp

xXi

2
(—;—)ds=m—%—% S~:Xp(— (s— )%/ (20,2)ds=F(%x:; tto, 002). The iterative weighted

least squares estimating procedure is, then, as follows.

(1°) Set initial values 4, and .2

(2°) Solve the system (13) for ax and 202 and calculate x; and 12 by the follow-
ing equations respectively.

M=o+ 21,

012=0,2+ 102,

(3°) Set w, 012 as initial values in place of x4, ¢,2 respectively.

Continue steps (1°)~(3°) until the latest set of adjustments is negligible.
We shall denote the latest set of estimates by #, 6% These will be the optimal
solution of the weighted least squares problem (1).

The sequences of {#* and ‘6% may fail to converge in particular cases. Even
when they do converge, if the weighted least squares equation has multiple
solutions there is no guarantee that they will converge to the solutions correspond-
ing to the absolute minimum of Q(#). In most cases it seems to converge to the
optimum solution.

§5. Comparison between WLS Estimates and ML Estimates

We now illustrate the computational procedure of our method using the argo-
rithm as described above and examine the goodness of an WLS estimates. For this
purpose we generated 1000 samples of size 100 from the normal population with
mean 100 and variance 100, and computed WLS estimates z, 2 based on (31,...,
y7) and ML estimates ;2 o2 based on 100 individual observations for each sample.
Here we set m=7 and x1=85, %2=90, ¥3=95, x4=100, x5=105, x¢=110, x#+=115, and
¥1,...,97 were calculated by the formula as mentioned for each sample. We gene-
rated uniform random numbers by the Lehmer’s formula; ‘

9:41=630360016v: (Mod 23 —1),

where v,=418369880, and tranformed them into standard normal numbers by the
method of Box-Muller, and then converted them into normal random numbers with
mean 100 and variance 100.

Table 1 presents the results of simulation. Figure 1 presents the correlation
diagram between 2 and 2 and figure 2 presents the correlation diagram between
2 and 2. From these results it looks that WLS estimates based on (31,...%7)
are as good as ML estimates based on 100 individual observations. As to the
precision of estimation it seems that there was no difference between WLS esti-
mates and ML estimates. If there is no loss of information caused by grouping
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date—this means simplification of measuring—as far as these kind of parameter
estimation can be performed, it is very important for practical statisticians.

Table 1. Comparison between WLS Estimates and ML Estimates-
Results of Simulation (on 1000 samples of size 100 from
N(100, 10))-

WLS E on (¥1,...,57) ML E on observations
MEAN E (11)=99. 9783 E () =99. 9850

V() =1.0370 V(1) =0.9710
VARIANCE E (52 =99. 6091 E (%) =99. 8026

V(0% =274.3744 V (52 =210. 3664

Figure 1. Correlation diagram between /J and ﬁ
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Figure 2. Correlation diagram between 52 and 2.
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