COMPARATIVE STUDIES ON TUMOR AFFINITY OF 111IN-BLEOMYCIN WITH THOSE OF 67GA-CITRATE AND 111IN-CHLORIDE

Yasuhiko ITO¹⁾, Akira MURANAKA¹⁾, Rinzo SOEJIMA²⁾, Toshiharu MATSUSHIMA²⁾, Yoshihiko TANO²⁾, Yoshinari IMAJO³⁾ and Masahiro UCHIDA⁴⁾

- 1) Division of Nuclear Medicine, Department of Radiology
- 2) Division of Respiratory Disease, Department of Internal Medicine
- 3) Division of Radiation Therapy, Department of Radiology
- 4) Division of Pharmacy

Kawasaki Medical School, Kurashiki, 701-01, Japan

Accepted for on Publication Dec. 1, 1976

Abstract

The tumor affinity of 111 In-Bleomycin was studied with rabbits bearing VX-2 cancer and cases of lung cancer, and the results are briefly summarized as follows.

1) Basic study

The clearance of ¹¹¹In-Bleomycin from blood was about the same as that of ¹¹¹InCl₃. The tumor affinity of ¹¹¹In-Bleomycin was confirmed. However, in comparing ¹¹¹InCl₃ and ⁶⁷Ga, the ratio of its accumulation in tumor to tissue, in most cases the accumulation of ¹¹¹In-Bleomycin was less, whereas its excretion into urine and feces was greater.

2) Clinical study

The radioactivity in term of the ratio between tumor and surrounding normal tissue was greater with $^{67}{\rm Ga}$ than with $^{111}{\rm In}$ -Bleomycin.

From the above findings it seems that ¹¹¹In-Bleomycin has an excellent tumor affinity but it is not so good as to replace ⁶⁷Ga.

INTRODUCTION

Clinical evaluation of ⁶⁷Ga-citrate has come to be practically established and its excellent tumor affinity has been confirmed, but several demerits have been also pointed out about it¹⁻³⁾. However, several tumorophilic radiopharmaceuticals that have been developed since ⁶⁷Ga do not surpass it, yet the demerits of ⁶⁷Ga still remain as they are.⁴⁹ Therefore, it is urgently necessary to develop still superior tumorophilic radiopharmaceutical. ¹¹¹In-Bleomycin (BLM) was reported by Thakur et

al.⁵⁾, in 1972, since then reports about it have appeared, especially about its clinical significance^{5,6,7)}.

Therefore we conducted a series of clinical studies on the efficacy of various tumorophilic radiopharmaceuticals including ⁶⁷Ga centering around VX-2 cancer as well as lung cancer, and on the basis of such observations we have attempted to evaluate the role of BLM among the available other similar agents and report here our findings.

MATERIALS AND METHODS

I. Basic Study

As experimental animals normal rabbits (weighing 2-3 kg) and VX-2 cancer-bearing rabbits were used. VX-2 cancer was made into a 20 % cell suspension and 1 ml of it was transplanted into the femoral muscle, and 14 days after transplantation radiopharmaceutical was administered. The radiopharmaceuticals used were ¹¹¹In-Bleomycin (supplied from Kaken Radiopharmaceuticals), ⁶⁷Ga-citrate (The Daiichi Radioisotope Labs.), and ¹¹¹In-chloride (Nihon Mediphysics Laboratory).

1. The blood clearance

To 3 normal rabbits 100 μ Ci of BLM was administered, and to other 3 normal rabbits 100 μ Ci of 111 InCl $_3$ was given and blood was aspirated from the animals by the heart puncture 1, 3, 6, 24 and 30 hours after the administration. Then the activity per 1 g blood was plotted on the semilogarithmic phase table and T 1/2 of the first phase was calculated.

2. The tissue distribution of BLM and 111InCl₃

Two days after the intravenous injection of 100 μ Ci BLM and 100 μ Ci 111 InCl₃ to two groups (each consisting of 3 rabbits) the activity in main tissues was determined and the activity per gram of tissue was estimated.

3. Comparative distribution of BLM and 67Ga in tissue

By the radioassay of main tissues 2 and 3 days after the simultaneous administration of 100 μ Ci of BLM and 100 μ Ci of 67 Ga to VX-2 cancer-bearing rabbits, the radioactivity per gram of tissue was determined.

4. Comparison of BLM and 67 Ga activities in the urine and feces excreted BLM and 67 Ga were administered simultaneously in dose of 100 μ Ci each to normal and VX-2 cancer-bearing rabbits, and the radioactivity in the urine and feces excreted 1, 2, 3 and 4 days later was measured,

and it was expressed in the percentage of the activity against the dose administered.

5. Comparative accumulation of BLM and ⁶⁷Ga in the inflammatory tissue

At first 0.2 ml of turpentine oil was administered to the left femoral muscle of normal rabbits, two days later BLM and $^{111}InCl_3$ 100 μ Ci each were injected intravenously, and still two days later the radioassays of the inflammatory tissue and the normal contralateral femoral muscle were conducted. The degree of accumulation of both agents in the inflammatory tissue was represented by the ratio of radioactivity in the inflammatory focal tissue/g to that in normal tissue/g.

II. Clinical Study of Cases with Lung Cancer

To seven cases with primary or metastatic lung cancer 2-2.5 mCi of BLM was administered and two days later the scanning was done with 5-inch scanner (Elscint, Israel). During the period of 1-2 week after the scanning 2-2.5 mCi of ⁶⁷Ga was administered, and the scanning was similarly performed 2-3 days later. In addition, the region of interest (ROI) was set on the image recorded by a color display apparatus (CDP-1, Elscint) and the radioactivity ratios of BLM and ⁶⁷Ga in the lesion to the surrounding normal tissue of the lung were calculated.

RESULTS

I. Basic Study

When the clearance of BLM from blood (Fig. 1) is expressed by T 1/2 of the first phase, it took the time of 14.5 hours and that of $^{111}InCl_3$ was 12 hours, both being about the same.

The tumor affinity of BLM is compared with that of ¹¹¹InCl₃ (Table 1), the ratio of BLM in tumor to blood is 2.68, and that of ¹¹¹InCl₃ is 3.58, and the ratio of BLM in tumor to muscle is 7.81, while that of ¹¹¹InCl₃ is 15.94, with both ratios that of ¹¹¹InCl₃ is greater. The ratio ¹¹¹InCl₃ in tumor to other tissues was also greater with ¹¹¹InCl₃.

The tumor-accumulation of BLM as compared with that of ⁶⁷Ga administered simultaneously is shown in Table 2. First, the ratio of BLM in tumor to blood is 4.94 two days after administration, and it is 3.91 3 days later, showing a greater ratio on the second day. Such a tendency was also observed in the small intestine, lung, and spleen. The ratio of tumor to muscle was 10.40 two days after administration and it was 10.42 on the third day, both being approximately the same.

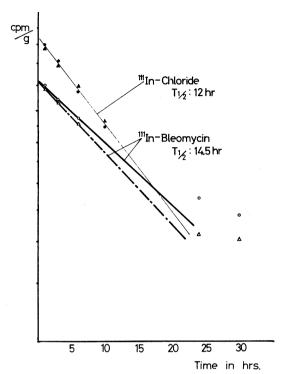


Fig. 1. Blood Clearance of ¹¹¹In-Bleomycin and ¹¹¹In-Chloride in Normal Rabbits.

 $\begin{array}{c} \textbf{TABLE 1} \\ \textbf{Comparison of Distribution of } \\ \textbf{^{111}In-Bleomycin with That of} \\ \textbf{^{111}In-Chloride in V2 Rabbits} \end{array}$

	Ratio Tumor Concentration to Tissue							
	¹¹¹ In-Bleomycin				¹¹¹ In-Chloride			
	No. 1	No. 2	No. 3	Aver.	No. 1	No. 2	No. 3	Aver.
Blood	3. 12	2.27	2.66	2.68	3.65	4.59	2.50	3.58
Liver	0.96	0.91	0.78	0.88	0.82	0.92	1.05	0.93
Small Intestine	3.32	2.98	3.14	3.15	4. 34	3. 53	1.88	3.25
Lung	2.25	2.16	1.70	2.04	2. 26	2.45	2.00	2.24
Spleen	0.79	0.69	0.68	0.72	0.64	0.80	0.69	0.71
Kidney	0.25	0.27	0.30	0.27	0.54	0.70	0.46	0.57
Bone	5.59	6.61	5.26	5.94	9.91	13.39	21.95	15.08
Marrow	0.43	0.52	0.43	0.46	0.62	0.67	1.33	0.87
Muscle	8.00	7.44	8.00	7.81	13.05	22.30	12.47	15.94
Necrotic Tumor	1.65	1.00	1.15	1.30	1.02	1.61	1.23	1.29

Table 2
Comparison of Distribution of ⁶⁷Ga with That of ¹¹¹In-Bleomycin in V2 Rabbits

	Ratio Tumor Concentration to Tissue Post injection days							
	2							
	Ga	BLM	Ga	BLM	Ga	BLM	Ave: Ga	rage BLM
Blood	5.95	5.05	7.35	7.11	3.15	2.65	5.48	4.94
Liver	0.81	0.83	0.71	0.77	0.79	0.90	0.77	0.83
Small intestine	2.87	2.98	49. 59	5.48	18.57	3.74	23.68	4.07
Lung	2.76	1.80	3.33	2.04	2.73	2.06	2.94	1.97
Spleen	0.85	0.57	0.90	0.80	0.92	0.72	0.89	0.70
Kidney	0.94	0.37	0.75	0.28	0.76	0.46	0.82	0.37
Bone	4.46	4.74	9.18	6.77	5.16	10.08	6.27	5.76
Marrow	1.00	0.56	0.81	0.56	0. 94	0.63	0.92	0.58
Muscle	53.1	9.86	56.9	10.93	41.7	14.5	50.57	10.40
Necrotic tumor	1.33	1.48	1.57	1.27	1.11	1.26	1.34	1.34
•								
	Ratio Tumor Concentration to Tissue Post injection days							
					3			
	Ga	BLM	Ga	BLM	Ga	BLM	Ave Ga	rag e BLM
Blood	2.66	1.72	7.42	4.53	6.93	5.48	5.67	3.91
Liver	0.80	0.62	0.84	0.84	1.00	1.01	0. 88	0.82
Small intestine	1.96	1.02	14.74	3.97	12.53	3.70	9.74	2.90
Lung	2.21	1.34	3.47	2.26	2.85	2.14	2.84	1.91
Spleen	0.51	0.28	0.95	0.67	0.62	0.54	0 .6 9	0.50
Kidney	0.52	0.25	0.99	0.49	0.99	0.55	0.83	0.43
Bone	6.09	4.15	7.33	10.98	5.88	8.06	6.43	7.73
Marrow	0.83	0.37	2.49	1.13	1.05	0.60	1.46	0.70
Muscle	15.67	5.89	60.00	19.05	17.41	6.33	31.03	10.42
Necrotic tumor	1.24	1.33	1.29	1.61	1.13	1.56	1.22	1.50
Urine	2.79	2.09	9.78	1. 60	10.07	7.24	7.55	3.64

Next, when the ratio of BLM in tumor to tissue is compared with that of ⁶⁷Ga, on both second and third days the ⁶⁷Ga level was clearly greater in blood and muscle, and in other tissues also there was no tissue in which BLM showed any remarkable ratio.

BLM and 67Ga excreted in feces and urine are shown in Fig. 2. The

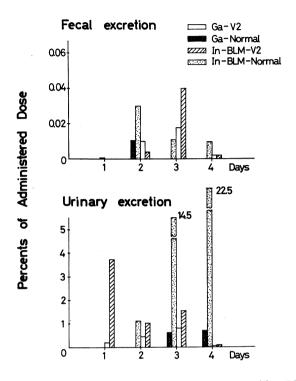


Fig. 2. Comparison of Fecal and Urinary Excretion of 441 In-Bleomycin with That of 67 Ga in Normal and V2 Rabbits.

amounts of BLM excreted in urine and feces were greater than those of ⁶⁷Ga with both normal rabbits and VX-2 cancer bearing rabbits. On looking at the accumulation of BLM and ⁶⁷Ga in the inflammatory lesion induced in the femoral muscle by turpentine oil, the accumulation of BLM is less than in the case of ⁶⁷Ga (Table 3).

TABLE 3

Deposition of ⁶⁷Ga and ¹¹¹In-Bleomycin in
Turpentine-induced Inflammation

Inflamed tissue to muscle ratio					
⁶⁷ Ga	21.70~77.48				
¹¹¹ In-BLM	7.36~21.83				
turpentine $\xrightarrow{\text{2d}}$ (0.2ml) i.m.	67 Ga, 111 In-BLM $\stackrel{2d}{\longrightarrow}$ radioassay				

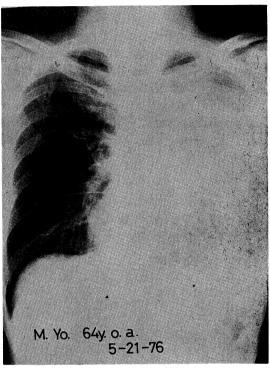


Fig. 3. Case 1 in Table 4. Posteroanterior roentgenogram reveals a pattern of collapse of the left lung.

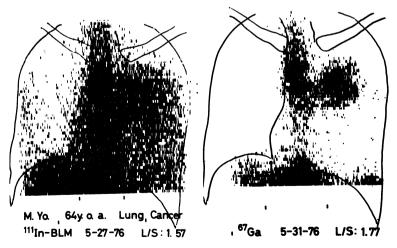


Fig. 4. ¹¹¹In-BLM and ⁶⁷Ga Scans of Case 1. L/S: Ratio tumor concentration to normal lung region.

II. Clinical Study

A case of lung cancer is shown in Figs. 3 and 4. This is a case whose left main bronchus is occupied by tumor, showing atelectasis of the left lung, and both BLM and ⁶⁷Ga display the tumor. However, ⁶⁷Ga displays the tumor more distinctly and the ratio of radioactivity in the tumor to the surrounding normal tissue with ⁶⁷Ga is greater by ROI. The summary of observation results of cases with lung cancer is illustrated in Table 4. It shows the accumulation of ⁶⁷Ga to be greater than BLM.

Table 4
Comparison of ¹¹¹In-Bleomycin with ⁶⁷Ga Citrate in Lung Cancer

-		Ratio Lesion to Normal		
Patient	Histology	¹¹¹ In-BLM	⁶⁷ Ga	
М. Yo.	Epidermoid cell ca.	1.57	1.77	
Y. Ku.		1.25	1.56	
H. Sa.	Metastatic (Salivary gland tumor)	1.29	1.63	
N. Ko.	Epidermoid cell ca.	1.33	2.20	
S. Ak.	Epidermoid cell ca.	1.57	1.61	
H. In.	Epidermoid cell ca.	1.21	1.61	
T. Ra.		1.32	2.15	

DISCUSSION

The labeling of Bleomycin with ^{99m}Tc or ⁵⁷Co has already been used for tumor diagnosis, and its tumor affinity has been recognized. However, in the case with ^{99m}Tc-Bleomycin there are problems of the yield of labeling and the stability of labeling, and as for ⁵⁷Co-Bleomycin there is a difficulty in its handling because of ⁵⁷Co is a nuclide with a long half life. Moreover, both of these chemicals tend to accumulate more in necrotic tumor than in viable tumor⁴).

Nonetheless, it seems to be a reasonable approach to make attempts at developing a tumorophilic radiopharmaceutical with Bleomycin taking advantage of its tumor affinity as it is to be used for the tumor diagnosis.

From the results of our attempts at improving several disadvantages

of ^{99m}Tc and ⁵⁷Co-Bleomycin with ¹¹¹In-Bleomycin, we can point out that the latter is superior to the other two kinds of radionuclides.

One of the reasons is the fact that the physical property of ¹¹¹In resembles closely to ⁶⁷Ga and has less difficulty in handling than in the case with ⁵⁷Co. The second is that differing from ^{99m}Tc- and ⁵⁷Co-Bleomycin⁴⁾, its accumulation in viable tumor is greater. This property is, needless to say, one of the essential requirements possessed to tumorophilic radiopharmaceuticals.

By the comparison with "InCl, since the accumulation in tissue differs between the two, in the case of "In-Bleomycin it is difficult to imagine that "In dissociates itself and conjugates with transferrin and ultimately behaves exactly like "InCl. However, it is possible to presume that "In may dissociate from "In-Bleomycin even partially.

⁶⁷Ga is an excellent one among the tumorophilic pharmaceuticals so far reported, but from the present experimental results as well as from clinical results ¹¹¹In-Bleomycin cannot be considered to surpass ⁶⁷Ga. There is a report that ¹¹¹In-Bleomycin is superior to ⁶⁷Ga in the detection of abdominal tumors⁷⁾, but from our basic study it did not necessarily yield satisfactory results. Furthermore, we obtained a still lower level of ¹¹¹In-Bleomycin accumulation in the inflammatory lesion than ⁶⁷Ga, it cannot necessarily be taken as a merit of ¹¹¹In-Bleomycin, because the agents with high tumor affinity would also deposit greater in the inflammation⁴⁾.

¹¹¹In-Bleomycin scintigraphy of lung cancer patients reflected well the results of basic study. Namely, the tumor display was good, but when compared with ⁶⁷Ga, ¹¹¹In-Bleomycin gererally presented a greater tissue background and a less ratio of tumor to surrounding lung tissue by ROI. For this reason it may be presumed that in the detection of mediastinal lesion it would be inferior to ⁶⁷Ga.

Acknowledgment

The authors are indebted to Misses Hiromi Isawa, Yukari Matsuda and Yumi Okamoto for their excellent technical assistance. This work was supported in part by the Research Project Grant of the Kawasaki Medical School (51-106) and the Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare.

REFERENCES

 Ito, Y., Okuyama, S., Awano, T., Takahashi, K., Sato, T. and Kanno, I.: Diagnostic evaluation of ⁶⁷Ga scanning of lung cancer and other diseases. Radiology 101: 355-362, 1971

- 2) Ito, Y., Okuyama, S., Sato, K., Takahashi, K., Sato, T. and Kanno, I.: ⁶⁷Ga tumor scanning and its mechanisms studied in rabbits. Radiology 100: 357-362, 1971
- Higashi, T., Nakayama, Y., Murata, A., Nakamura, K., Sugiyama, M., Kawaguchi, T. and Suzuki, S.: Clinical evaluation of ⁶Ga-citrate scanning. J. Nucl. Med. 13: 196-201, 1972
- 4) Ito, Y., Okuyama, S., Takahashi, K., Sato, T., Nakamura, K., Ichikawa, T. and Muranaka, A.: Role of inflammation in tumorous accretion of Radiopharmaceuticals studied with ⁶⁷Ga, ¹⁶⁹Yb, ¹¹¹In, ^{99m}Tc-pertechnetate, ^{99m}Tc-Bleomycin, ⁵⁷Co-Bleomycin and ¹⁹⁸Au-colloid. Radioistopes 24: 411-414, 1975
- 5) Thakur, M. L., Merrick, M. V. and Gunasekera, S. W.: Some radiopharmaceutical aspects of a new radiopharmaceutical, ¹¹¹In-Bleomycin. In Radiopharmaceuticals and Labelled Compounds, vol. 2, Vienna, IAEA, 1973, pp 183-193
- 6) Paterson, A. H. G., Taylor, D. M. and McCready, V. R.: A clinical comparison of the tumor-imaging radiopharmaceuticals ⁶⁷Gallium-citrate and ¹¹¹Indium-labelled bleomycin. Brit. J. Radiol. 48: 832-842, 1975
- 7) Lilien, D. L., Jones, S. E., O'Mara, R. E., Salmon, S. E. and Durie, B. G. M.: A clinical evaluation of Indium-111 Bleomycin as a tumor-imaging agent. Cancer 35: 1036-1049, 1975
- 8) Ito, Y., Okuyama, S., Miyagi, T., Takahashi, K., Awano, T. and Sato, T.: Tumor deposition of ¹¹¹In studied in the rabbit. Science Report, Tohoku Univ.-C. 19: 146-153, 1972