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ABSTRACT. Recent Studies have revealed that tubulointerstitial damage
with infiltration of macrophage occurs in the interstitium adjacent to
tubules producing osteopontin mRNA and proteins. In this study, we
examined the expression of the osteopontin gene in epithelial cells of
Bowman’s capsule in various glomerular injuring models, because these
cells exist between the glomerular capillary tufts and interstitium. This
result demonsrated that the osteopontin gene was expressed in the
damaged tubular epithelial cells and epithelial cells of Bowman’s capsule
in three different models of glomerular diseases. These lesions were
followed by a monocyte-macrophage influx. Given the evidence that
osteopontin expression of the epithelial cells of Bowman’s capsule appears
with glomerular damage, and that it may be a monocyte-macrophage
adhesive/chemotactic factor, our dara are consistent with the hypothesis
that osteopontin may play an important role in monocyte-macrophage
accumulation and glomerular damage, mainly extracapillary lesions.
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Osteopontin is a highly acidic, phosphorylated, secreted glycoprotein, also
known as uropontin.? Originally isolated as a matrix molecule in bone,?
osteopontin is now known to be produced by a variety of cell types including
renal tubular epithelial cells,® macrophages? and smooth muscle cells.® Thus
far, only a single gene for osteopontin has been identified® and the gene
encodes a protein containing 317 amino acids in the rat.¥ Osteopontin from
various species contains highly conserved regions that have homology to
calcium-, heparin-, and cell-binding motifs of other proteins.® Of particular
interest, osteopontin contains an arg-gly-asp motif that has been shown to
promote arg-gly-asp-dependent adhesion of osteoblasts, osteoclasts, kidney, and
smooth muscle.”~® Besides the promotion of adhesion, osteopontin has been
shown to be a potent inhibitor of calcium oxalate formation in vitro,) and a
stimulator of bone resorption in vitro.'® Recently, evidence supporting the
possibility that osteopontin functions as a chemotactic molecule has been
reported. In addition, recent studies have reported that the elevated expression
of osteopontin occured early and that the expression was followed by a
monocyte-macrophage influx in tubulointerstital injury.'*!? In this study, we
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examined expression of the osteopontin gene in the epithelial cells of Bowman’s
capsule in various glomerular injury models, because these cells exist between
the glomerular capillary tufts and interstitium. Our study showed that the
epithelial cells of Bowman’s capsule play a significant role in progressive
glomerular damage, such as in the promotion of adhesive lesions.'®

MATERIALS AND METHODS

Animals : Female WKY rats (Charles River Japan Co, Yokohama, Japan)
and male Wistar rats (Clea Japan Co, Osaka, Japan), which were housed in
metabolic cages and given food and water ad libitum, were used in this study.
All surgery and all infusions were performed under general anesthesia with
ether and additional injections of phenobarbital when necessary.  This
experiment was approved by the Animal Research Committee of Kawasaki
Medical School (No. 96-074, 1996) and conducted according to the “Guide for
the Care and Use of Laboratory Animals” of Kawasaki Medical School.

Disease models : Anti-Thyl. 1 glomerulonephritis (Thyl GN) was induced
by intravenous injection of anti- thymocyte plasma (clone: OX-7, Cedarlane
Laboratories, Ontario, Canada) into Wistar rats (N=4), as described’ by
Johnson et al.'® Puromycin aminoclesodide nephrosis (PAN nephrosis) was
also induced by intracutaneous injection of puromycin (1.5 mg/100 g body
weight per day) (Sigma Chemical Co, St Louis, Mo, USA) into Wistar rats
(N=4) for five days.’® Finally, crescentic glomerulonephritis (Crescentic GN)
produced by glomerular basement membrane (GBM) antigen (emulsified with
an equal volume of Freund’s complete adjuvant, provided by Dr Y. Sado)
injection into footpads of WKY rats (N=4)."® These models rats were
sacrificed at days 4, 7, 14 (Thyl GN), 25 (PAN nephrosis), and 12, 16, 21
(Crescentic GN) following induction of disease.

Renal morphology and immunohistochemistry : For the morphological
study, rats were perfused with 4% paraformaldehyde (PFA) via the left
ventricle, and both kidneys were fixed. After dehydration, the kidneys were
embedded in paraffin and sections of 5 ym were prepared. After
deparaffinization, Periodic Acid-Schiff (PAS) staining of these sections was
performed. The sections were also treated with 0.3% hydrogen peroxidase in
methanol for 30 min at room temperature to inactivate endogenous peroxidase.
Then they were immersed in non-immunohorse serum for 30 min, washed in
0.02 M phosphate-buffered saline (pH 7.2), and reacted with anti-EDI1
monoclonal antibody (Serotec, Oxford, UK) for 2 hrs at room temperature.
After washing in phosphate-buffered saline, bound antibodies were also
detected using the avidin-Biotin-complex (ABC) kit (Vector Co, Barlingame,
USA). The bound antibodies were detected using 3,3-diaminobenzidine
tetrahydrochloride (DAB) in Tris-buffered saline containing 0.02% hydrogen
peroxide for 5-10 min.

In situ hybridization : In situ hybridization was performed as described by
Tsukamoto et al/'” and Yoshimura et al.'®

Probe preparation : Murine osteopontin cDNA (provided by Dr S.
Nomura) was cloned into the Hind III sites of the transcription vector
pBluescriptSK (—) at a site between the T3 and T7 promoters. The template
was linearized with the restriction enzyme EcoR 1 (anti-sense) or Xho I
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(sense probe) and labeled RNA probes were synthesized with T7 RNA
polymerase (anti-sense probe) or T3 RNA polymerase (sense probe) using
digoxigenin-labeled uridine-triphosphate (DIG-UTP) as the substrate
according to the manufacturer’s instructions (Boehringer-Mannheim,
Mannheim, Germany).

Tissue preparation : The sections used were cut from the paraffin block
prepared for renal morphology and immunohistochemistry. After
deparaffinization through conventional xylene and ethanol steps, the sections
were treated with glycine (2mg/ml in PBS for 10 min) to quench the fixative
and with acetic anhydride (0.25% v/v in 0.1 M triethanolamine at pH 7 for 15
min) to reduce non-specific binding.

Hybridization : For hybridization, 20 g4l of a hybridization mixture
containing 50% formamide, 2X SSC (1X SSC=0.15 M NaCl and 0.015 M Na
citrate), 10% dextran sulphate, 0.25% bovine serum albumin, 1 mg/ml yeast
tRNA, 1 mg/ml denatured salmon sperm DNA, and the RNA probe (500 ng/
ml) was applied to the sections. Then they were covered with 25 X 50 mm
Parafilm and incubated in a moisturized chamber at 50°C for 15-16 hrs. The
Parafilm on a slide was then floated off by immersion in 2 X SSC, 50%
formamide and 10 mM DTT (Dithiothreitol). The sections were washed three
times with 2 X SSC, 50% formamide, 10 mM DTT at 50°C for 1 hr with
agitation, and then were treated with 20 yxg/ml RNase A in 10 mM Tris (pH
8.0) containing 0.5 M NaCl, 1 mM EDTA at 37°C for 30 min. Then they were
washed three times with 0.1 X SSC containing 10 mM DTT at 50°C for 1 hr.

Colorimetic detection of mRNA following hybridization : Detection was
accomplished with the Genius Nonradioactive Nucleic Acid Detection Kit
(Boehringer-Mannheim). Slides were washed for 1 min in Buffer 1 (100 mM
Tris-HCI, 150 mM NaCl: pH 7.5) and then incubated in Buffer 1 containing
2% normal sheep serum and 0.3% Triton X-100 at room temperature for 30 min.
Next, 100 xl of anti-digoxigenin antibody conjugated to alkaline phosphatase
(1:500 dilution) was applied to the sections, and they were incubated in a
humid chamber overnight at 4°C. Following washing in Buffer 1 and Buffer 2
(100 mM Tris-HCI, 100 mM NaCl, 50 mM MgCl, ; pH 9.5), 100 g1 of color
solution was applied to the slides and incubation was carried out at room
temperature in a dark, humid chamber. The color solution was made by
adding 45 41 NBT (nitroblue tetrazolium salt, 75 mg/ml in dimethyformamide,
70% (v/v)), 35 ul X-phosphate solution (5-bromo-4-chloro-3-indolyl phosphate
toluidium salt, 50 mg/ml in dimethylformamide) and 2.4 mg levamisole
(Sigma) to 10 ml Buffer 3 (10 mM Tris-HCl, | mM EDTA ; pH 8.0).

Control : Control experiments were performed to confirm the specificity of
hybridization between the probes and targer mRNAs. The sense strand probes
were used as a control.

RESULTS

Renal morphology and immunohistochemistry :

Thyl BN : This model rat showed acute mesangiolysis on days 1 and 2.
Significant glomerular cell proliferation was observed between days 2 and 6.
On day 14, glomerular cell proliferation had returned to the normal range.
Marked EDI1 positive cell infiltration was noted on day 1 (mesangiolytic
phase), after which it decreased, but still remained presence in comparison with
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Fig 1.

Fig 2.
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Mesangilproliferative nephritis (Thyl GN)

(A) Mesangiolytic lesion (asterisk) is shown at day 2. PAS Original
Magnification X 400

(B) Marked EDI1 postive cells infiltrate in to the glomerulus with mesangiolytic
lesion (asterisk). Day 2. Original Magnification X400

(C) Osteopontin mRNA is localized to the epithelial cells of Bowman’ capsule
(arrows) during the mesangiolytic phase. Asterisk : mesangiolytic lesion. Day
2. Original Magnification X 400

Puromycin aminoclesodide neghrosis (PAN nephrosis)

(A) Cytoplasmic granules that stained positive with PAS are present in podocytes
(arrow). Proliferation of glomerular epithelial cells can also be seen in the
adhesive lesion. PAS Original Magnification X 400

(B) Site of adhesive lesion (asterisk) showing no participation of ED1 (+) cells.
However, ED1 (+) cells (arrowheads) are present in the periglomerular
interstitium. Original Magnification X 400

(C) Osteopontin mRNA is localized to the epithelial cells of Bowman’s capsule near
an adhesive lesion (asterisk). Original
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normal rats on days 2, 4, 6 (Fig 1A, B).

PAN nephrosis : PAS-positive granules (absorption droplets) and vacuolar
changes were detected in degenerative podocytes. The most obvious
abnormality was the appearance of local lesions that consisted of a cluster of
vacuolar and often hypertrophic epithelial cells in the urinary space. Adhesive
lesions were frequently associated with segmental mesangial expansion with a
slight hypercellularity or hyalinosis. EDI positive cells were found exclusively
in the mesangial areas and capillary lumens. EDI1 positive cells were also
present in the periglomerular interstitium (Fig 2A, B).

Crescentic GN: Severe necrotizing and mesangioly glomerular damage
was observed from day 16. After glomerular damage, mesangial
hypercellularity with mensangial cell proliferation and extracellular matrix
accumulation began with crescent formation. EDI1 positive cells were detected
in mesangiolytic, crescentic and periglomerular areas from days 12 to 21 (Fig
3A, B).

In situ hybridization : In normal rat renal cortex, osteopontin mRNA
localized to distal tubular epithelium. In all the models, osteopontin
expression was up-regulated cortical tubular epithelial cells during the course of
the diseases (Fig 4). :

Thyl GN: When Thyl GN was induced with anit-thymocyte plasma, th
expression of osteopontin mRNA remarkably increased in the epithelial cells of
Bowman’s capsule (Fig 1C), proximal and distal tubular regions (Fig 4)
without any histological damage by day 4 post-injetion. However, on day 14,
the mRNA expression was seen focally in many cortical tubules far from the
glomeruli.

PAN nephrosis: The expression of the mRNA was detected in the

Fig 3. Crescentic glomerulonephritis (crescentic GN)
(A) A segmental necrotizing and mesangiolytic lesion is found with exudative
changes. Day 16, PAS Original Magnification X 400.
(B) EDI positive cells are detected in mesagiolytic, crescentic and periglomerular
areas (arrowheads). Original Magnification X 1000
(C) The expression of osteopontin mRNA is detected at Bowman’s capsule and
crescent lesion (arrow). Day 16, Original Magnification X 400
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epithelial cells of Bowman’s capsule close to adhesive lesions (Fig 2C). As
with Thyl GN, osteopontin mRNA was detected in proximal and distal
tubules, and collecting ducts (Fig 4C).

Crescentic GN: When a crescent was observed, the expression of
osteopontin mRNA was localized in Bowman’s capsules and crescent lesions
(Fig 3C). Osteopontin mRNA was also detected in proximal and distal
tubules, and collecting ducts (Fig 4D).
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Fig 4. Osteopontin gene expression of up-regulated in tubules in all three models.
In normal rat renal cortex, osteopontin mRNA is localized to distal tubular epithelial
cells (A). In all three models, osteopontin mRNA expression was up-regulated in
cortical tubular epithelial cells duming the course of the diseases. (B: Thyl GN, C:
PAN nephrosis, D : Crescentic GN) Original Magnification X 200

DISCUSSION

In this study, osteopontin mRNA was detected in damaged tubular
epithelial cells and epithelial cells of Bowman’s capsule in three models.
Furthermore, these lesions were followed by a monocyte-macrophage influx.

Osteopontin is a sialic acid-rich, noncollagenous bone phosphoprotein that
binds strongly to the calcium phosphate-based bone matrix.!® Expression of
the osteopontin gene under normal conditions is limited to a few sites,
including the kidney.'® Northern blotting analysis has shown that osteopontin
mRNA in the adult kidney is quite abundant in comparison with other
tissues.2? Its production is augmented in response to various mitogens and
growth factors, such as phorbol esters and TGF-g.>»*?  The function of
osteopontin in the kidney is not yet understood. A recent study showed that
osteopontin was markedly up-regulated in cortical distal tubular epithelium in
rats following infusion of angiotensin II and that the sites of osteopontin
expression correlated with the sites of monocyte-macrophage infiltration and
tubular injury.!® These data suggest that osteopontin may act as a marker of
tubular injury and that it may function as a chemotactic or adhesive factor in
the recruitment of a monocyte-macrophages to these sites. Although it is
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possible that osteopontin may play a role in the interstitial
monocyte-macrophage recruitment that occurs in tubulointerstitial disease,
one can not exclude the possibility that it may have other functions in the
kidney or other tissues.?* ?® For example, we have noted that high levels
of osteopontin are found in the medullary tubules, and others have also
reported osteopontin mRNA, osteopontin protein, or a related 30-kD
protein fragment in the tubular fluid, whereas in diseased kidneys the
protein may be released into the extracellular space. Other studies have
noted that osteopontin may be found in normal urine.” Indeed, Hoyer et
al have suggested that osteopontin may function as an endogenous inhibitor of
calcium crystal formation.

The epithelial cells of Bowman’s capsule seen between the glomerulus and
interstitium, however, have received little attention in studies of various renal
disease. Previously, Gaffney and Panner?” described yet another type of
abnormal epithelial cell of Bowman’s capsule-prominent parietal epithelium
(PPE) in patiens with membranous nephropathy. They also reported that PPE
cells have the ultrastructural characteristics of actively proliferating cells and
damaged cells. Furthermore, patients with membranous nephropathy with
PPE have had, on average, proteinuria of longer duration and greater severity
than have patients with membranous nephropathy with normal epithelial cells
of Bowman’s capsule. In addition, we?® and others?*=3" previously reported
that the adhesive lesion included a complex series of changes in both the
podocytes and epithelial cells of Bowman’s capsule. These findings suggest that
the epithelial cells of Bowman’s capsule play an important role in progressive
glomerular damage. In this study, osteopontin mRNA was detected in the
epithelidl cells of Bowman’s capsule in three models of glomerular diseases.
Furthermore, these lesions (periglomerular areas) were followed by a
monocyte-macrophage influx. We have constructed a cell-mediated paradigm
for progressive nonimmune renal injury involving macrophages, up-regulated
TGF-p expression, extracellular matrix accumulation, and eventual scarring.3?
This putative process appears to be operant in a number of glomerulopathic
and tubulointerstitial models of renal injury including the experimental
nephrotic syndrome produced by puromycin aminonucleoside and adriamycin,
renal ablation, and protein overload proteinuria.’3%

In conclusion, this study provides evidence that osteopontin is expressed by
the epithelial cells of Bowman’s capsule in glomerular injury. In addition,
given the evidence that osteopontin expression of epithelial cells of Bowman’s
capsule appears with glomerular damage, and that it may be a
monocyte-macrophage adhesive or chemotactic factor, our data are consistent
the hypothesis that osteopontin may play an important role in
monocyte-macrophage accumulation and glomerular damage (mainly
extracapillary lesions). However, further studies are necessary for a clearer and
more detailed understanding of the role of osteopontin in the epithelial cells of
Bowman’s capsule at the site of glomerular damage.
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