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ABSTRACT. The study of membrane fusion is an important subject of
cell biology, especially intracellular transport system, which works through
membrane fusion of transport vesicles.  Nevertheless we have few
informations about cellular proteins responsible for fusion reaction. Study
of fusion mechanism has been done mainly with viral fusion-active
proteins. The most intensively studied fusion-active protein is
hemagglutinin (HA) of influenza A virus, and it has been shown that
fusion-active subunit of HA is transformed into a long a-helical coiled
coil at low pH and bridges two adjacent membranes with two
hydrophobic regions, namely the fusion peptide region and the anchor
region. Flexible bridge of the coiled coil may mediate mixing of the lipid
bilayers, eventually resulting in membrane fusion. In this review, we focus
on the molecular mechanism of membrane fusion, which has been
elucidated mainly through the studies with influenza HA protein.
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Membrane fusion activity is essential for enveloped viruses to initiate viral
infection. Through the fusion of viral envelope with cellular membrane the
virus delivers its genome into the cytoplasm of host cell. Membrane fusion is
an important subject not only in the field of virology but also in the field of
cell biology, especially intracellular transport system, which is driven by
membrane fusion of transport vesicles. Although the study of membrane fusion
is a general subject of biology, we have only few informations about cellular
protein responsible for membrane fusion, and the study has been done mainly
with viral fusion-active proteins.

Fusion-active protein was identified at first in Sendai virus by Homma and
Ohuchi at1973.) The fusion (F) protein of Sendai virus is synthesized as a
fusion-inactive precursor and then activated by proteolytic cleavage with
protease such as trypsin.?® Till now, many fusion-active proteins have been
identified in various viruses. In most cases, they are synthesized as
fusion-inactive precursors and then cleaved into fusion-active subunits by
cellular protease(s). Fusion-active viral proteins can be classified into two
groups according to their optimal pH for fusion reaction. One of them
promotes membrane fusion at neutral pH and thereby the viral genome enters
cytoplasm through the cytoplasmic membrane (Fig 1A). The other mediates
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Fig 1. Entry pathway of enveloped viruses by membrane fusion. A) Viral envelope fuses

with the cytoplasmic membrane. B) Viral envelope fuses with the endosomal membrane
under acidic condition in endosome.
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membrane fusion at acidic pH and thereby the viral genome enters cytoplasm
through the endosomal membrane under the acidic conditions in endosome
(Fig 1B). F protein of Sendai virus belongs to the former group and
hemagglutinin (HA) of influenza A virus belongs to the latter group.*® HA
is the most intensively studied fusion-active protein. This is owing to the fact
that HA is the only fusion-active protein, of which the three-dimensional
structure has been clarified through X-ray crystallography.® In this review, we
focus on the molecular mechanism of membrane fusion, which has been mainly
studied with influenza HA protein.

CLEAVAGE ACTIVATION OF HA

Proteolytic cleavage of HA into subunits HA1 and HA2 is prerequisite™®
for membrane fusion activity and the cleaved HA mediates fusion reaction
under acidic conditions.? As shown in Fig 2,'9 the cleavage site of HAs of
human influenza viruses (subtypes H1 to H3) and avian apathogenic influenza
viruses (subtypes H4, H6 and HS8 to H13) consists of single arginine, which can
be cleaved only by limited proteases such as Clara protease in lung! and
trypsin. It means that these viruses can not infect cells in the absence of
activating protease and therefore the infection is restricted in limited regions
where the appropriate activating enzyme is present. On the other hand, HAs
of avian highly pathogenic influenza viruses (subtypes H5 and H7) contains
successive basic amino acids at the cleavage site,!? which can be easily cleaved
by ubiquitous intracellular proteases such as furin.!®>'¥ In this case, every virus
carries already activated HA, and therefore such virus may cause pantropic
systemic infection. Thus the cleavability of HA is an important determinant of
pathogenisity of influenza virus.!5-!7 This is the case also with
paramyxoviruses.!8-2%
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Subtype Cleavage site
C-terminus of HA1 N-terminus of HA2

HT - NIPSIQSR GLFGAIAGF | EGGW—————-
H2 - NVPQIESR GLFGAIAGF1EGGW-—--—-
H ———— NVPEKQTR GLFGAIAGF IENGW-——---
H4 - NIPEKASR GLFGAIAGF | ENGW-————-
HY - NVPQKKKR GLFGAIAGF IEGGW----—-
Hov —————- NVHQRKKR GLFGAIAGF | EGGW--———-
H6 — ————- NVPOIETR GLFGAIAGF |EGGW-——-—-
HT - NVPEPSKKRKKR GLFGAIAGF |ENGW-——-—-
H§  —————- NTPSVEPR GLFGAIAGF IEGGW-—-—--
HY ——- NVPAVSSR GLFGAIAGF IEGGW-——-—-
H10 -———- NVPEVVQGR GLFGAIAGF IENGW--———-
H1T - NVPATASR GLFGAIAGF | EGGW———-—-
H12 -———- NVPQVQDR GLFGAIAGF | EGGW------
H1§ ———- NVPAISNR GLFGAIAGF IEGGW-————--

Fig 2. Cleavage sites of hemagglutinin (HA) of various subtypes of influenza virus. HS5v
is a variant of H5 subtype.

ACTION OF FUSION PEPTIDE

It is generally accepted that the fusion activity of HA is mediated by the
hydrophobic region at the amino terminus of the HA2 subunit.? This region
is called “fusion peptide” and its amino acid sequence is strictly conserved
among various influenza virus strains (Fig 2). At neutral pH the fusion
peptide is located at the bottom of the stem region of HA spike.® An HA
spike is composed of three HA polypeptides, namely homotrimer. The location
of the fusion peptide is shown in the three-dimensional structure model of HA
monomer (Fig 3A and B). In the HA spike, the fusion peptide is buried inside
three stems of HA trimer (Fig 3C). It has been known that at low pH a
conformational change of the ectodomain of HA occurs and the fusion peptide

" is inserted into the target membrane.?=2® As the carboxyl terminus of HA2 is
composed of a transmembrane anchor domain and a short cytoplasmic domain,
HAZ2 should bridge two membranes with the amino terminus, namely the fusion
peptide, and with the carboxyl terminus, namely the anchor domain (Fig 4A,
B and C). This bridging may be necessary but not sufficient for membrane
fusion. Deletion or subsitution of even one amino acid in the fusion peptide
abolished completely the fusion activity, although the deletion or substitution
mutant retained the activity to plunge the fusion peptide into the target
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Fig 3. Three-dimensional structure of HA spike. A) Monomer of HA. The model of
Wilson et al® was modified by adding the transmembrane and cytoplasmic domains. B)
HA2 monomer, with HA1 domain omitted for clarity. C) Schematic model of HA spike

(an HA spike is the trimer of HA polypeptides). The Model of Yu et a/?® was modified
by adding the heads (HAI1 region).
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Fig 4. Conformational change of HA2 subunit and insertion of the fusion peptide into the
target membrane. A) HA2 region at neutral pH. B) Beginning of conformational change
of HA2 region. The loop region begins to be folded in a-helix and the fusion peptide
appears outside. C) The fusion peptide is inserted into the target membrane.
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membrane.?#?® This observation indicates that not only hydrophobicity but
also some special structure is required for the fusion peptide to mediate
membrane fusion. Very similar sequence as the fusion peptide is observed at
the amino termini of F1 which are generated by proteolytic cleavage of F
proteins of paramyxoviruses.?® Asano et al showed that the amino terminus
of Sendai virus F1 recognized the structure of cholesterol and its derivatives,
which are known as important components of membrane. They thought that
the binding of F1 to cholesterol is essential for membrane fusion.?” Such
receptor-like substance has not yet been identified with the fusion peptide of
influenza HA.

HOW CAN THE FUSION PEPTIDE APPROACH THE TARGET MEMBRANE ?

As mentioned above the fusion peptide is located distant from the
membrane of the target cell at neutral pH. Between the target membrane and
the fusion peptide there are head region and long stem region (Fig 3C). Three
heads carrying receptor binding activity must be removed or relocated to allow
the fusion peptide to interact with the target membrane. Godley et al showed
that introduction of intermolecular disulfide bondages which connect the heads
each other abolished the fusion activity completely and the activity was
restored after reductive agent treatment which should release the bondages.?®
Thus, the opening of the heads is proven to be prerequisite for membrane
fusion (Fig 5). However, it is clear that the opening is not sufficient for the
fusion peptide to approach the target membrane. The fusion peptide is located
at the bottom of the longest @-helix in HA molecule. The fusion peptide is
connected with a short @-helix which links with a loop and then the top of the
longest a-helix (Fig 3B). To explain how the fusion peptide can approach the
target membrane, Carr and Kim have proposed the spring-loaded model.>?
They analyzed animo acid sequence of the loop connecting the short a-helix
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Fig 5. Opening the head region at low pH is necessary for fusion activity. A) Wild type
HA. The head region opens at low pH. B) Mutant HA, in which intermolecular
disulfide bonds were introduced. Opening the head is impossible unless the
intermolecular disulfide bond is reduced.
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and the longest «-helix and found that this loop has a potential to form
a-helix. They synthesized artificially a peptide corresponding to the entire
loop region plus part of the longest a-helix and found that this peptide was a
random coil at neutral pH but formed trimer of @-helix at the low pH which
could convert HA fusion-active. If this is also the case in HA molecule, the
loop region would be folded at low pH and consequently form a further longer
a-helix coiled coil (Fig 4B and C). Through such conformational change, the
fusion peptide could move 100 A toward the target membrane. Bullough et al
analyzed the soluble part of HA2 by X-ray crystallography and found that the
loop was folded and formed the a-helix coiled co0il.*® They thought also that
the fusion peptide could move 100 A toward the tip of HA molecule through
the formation of the long «-helix coiled coil. According to this model, the
fusion peptide can easily approach the target membrane at low pH.

HA IS IN METASTABLE STATE

Carr and Kim synthesized a longer peptide which contained the sequence
of entire short @-helix and loop region plus part of the longest @-helix, and
found that the longer peptide formed trimer of a-helix (coiled coil) not only
at low pH but also at neutral pH.?® This finding indicates that the region
composed of the short a-helix, the loop and the longest a-helix would rather
form a further longer @-helix coiled coil if there were no structural constraint
from other components surrounding this region. It means that this region
should take a constrained structure in the HA spike at neutral pH, in other
words, HA should be in metastable state at neutral pH and the acidification
may release the tension included in HA spike through the conformational
change. This concept is supported also by Chen et a/*" When cDNA coding
a soluble part of HA2 was expressed in E. coli, they found that the soluble
domain of HA2 took the low-pH-induced conformation even at neutral pH.
This demonstrates again that the acidic form, namely the coiled coil structure,
is energetically the most stable form if any other structural constraint is not
present. Thus, when the head region of HA spike opens at low pH, only a
small activating energy may be required to convert HA2 from metastable form
into fusion-active form.

In metastable HA spike the fusion peptides are located at the bottom of
HA spike and stay inside the trimer of long @-helix. This region is surrounded
nine oligosaccharide side chains and these glycosylation sites are strictly
conserved among all influenza A viruses (Fig 6A). Recently we demonstrated
that these oligosaccharides in the stem region maintain HA in the metastable
form required for fusion activity.?? Additionally some Influenza viruses utilize
also their ion channel protein M2 for maintaining HA in the metastable
form.3339

ROLE OF TRANSMEMBRANE AND CYTOPLASMIC DOMAINS OF HA IN
FUSION REACTION

In contrast to the ectodomain of HA, structure-function relationships are
less well understood in the transmembrane domain and in the cytoplasmic tail
of HA. It is not clear how these regions contribute to membrane fusion. The
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Fig 6. Conserved oligosaccharides at the stem of HA and variant HAs. A) The stem of
HA spike is surrounded with nine oligosaccharide side chains. B) The transmembrane
and cytoplasmic domains were exchanged for glycosylphophatidylinositol (GPI). C) Five
amino acids were added to the end of the cytoplasmic tail.

first evidence for their involvement in fusion activity was obtained from the
observation showing that deletion of the covalently bound fatty acids from the
transmembrane and cytoplasmic domains of a subtype H2 HA abolished fusion
activity.?® This indicated that acylation of these domains was essential for
fusion activity. In contrast, several other studies employing H2 and different
HA subtypes showed fusion activity even after deletion of all fatty acids.?6*?

Kemble et al substituted the glycosylphosphatidylinositol (GPI) anchor for
the transmembrane and cytoplasmic domains of HA (Fig 6B) and found that
the GPI-anchored HA mediated fusion of the outér leaflet of bilayer membrane
but was not able to mediate full process of membrane fusion.*” They called
this step “hemifusion” (Fig 7). From this result they thought that not only the
fusion peptide but also the transmembrane domain is required for HA to
mediate the membrane fusion. Since it is known that the cytoplasmic domain
of HA is not essential for virus infectivity,*” they focused on the
transmembrane domain as the region responsible for fusion activity. However,
GPI-anchored HA differed in oligosaccharide processing from the original
HA%, indicating an abnormal folding of the ectodomain in GPI-anchored HA.
It is therefore not clear whether the effect of GPI anchor on fusion activity is
due to the loss of transmembrane domain or to the abnormal folding of the
ectodomain in GPI-anchored HA.

Recently we found that elongation of the cytoplasmic tail (Fig 6C) reduced
drastically fusion activity while it did not affect oligosaccharide processing,
surface transport and receptor binding activity of HA.*¥ The elongation of the
tail interfered with formation and enlargement of fusion pores but not so with
hemifusion. The interfering effect depended on the size, but not on the
sequence of the attached peptides. The similar phenomenon has been reported
with envelope glycoproteins of retroviruses including human and simian
immunodefficiency viruses (HIV and SIV), that is, truncation at the carboxyl
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Fig 7. Fusion process. In hemifusion only the outer leaflets of lipid bilayer membrane are
fused, and in fusion pore building process the soluble contents of cells are mixed. These
processes can be monitored individually by labelling the outer leaflet of lopid bilayer
with octadecylrhodamine (R18) or labelling the cell contents with calcein.

terminal end resulted in increased syncytium forming ability.*5—52

Insight into the mechanism how the cytoplasmic tail modulates fusion
comes from recent X-ray crystallographic studies performed on the acidic form
of HA2, namely the fusion-active conformation,® and on the transmembrane
subunits of envelope glycoproteins of murine leukemia virus®® and HIV®® that
suggest a common mechanism for fusion initiation. According to these studies
the core of the proteins is an extended, triple-stranded «-helical coiled coil,
with the top ends of which the fusion peptides link. In gp 41, the
transmembrane subunit of HIV, the coiled coil is surrounded with three other
a-helices in the reverse direction.’ This conformation places the
amino-terminal fusion peptide and the carboxyl-terminal membrane anchor
near each other (Fig 8). With the anchor embedded in the viral envelope and
the fusion peptide inserted into the target membrane, this structure forces both
membranes into close apposition. Electron microscopy and antibody labeling
of membrane-associated HA2 provided further support for such structure.5®
Flexible links between the central rod, the fusion peptide, and the anchor may
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Fig 8. Flexible bridge of HA2 or gp4l. The flexible links between the central rod and the
fusion peptide and the anchor may allow oscillation of both hydrophobic domains in the
adjacent membranes which may cause perturbation and mixing of the lipid bilayers,
eventually resulting in fusion.

allow oscillation of both hydrophobic domains in the adjacent membranes
which may cause perturbation and mixing of the lipid bilayers, eventually
resulting in fusion.?®5¥ It is an intrinsic feature of this model that fusion
peptide and membrane anchor have very similar functions in fusion, and the
observation that the process proceeds only to hemifusion when the anchor
peptide is replaced with GPI lipid anchor indicates that both hydrophobic
peptide domains are equally important for complete fusion.*” On the other
hand, the mobility of the membrane anchor may be limited by the cytoplasmic
tail and this constraint may interfere with fusion when the tail is elongated
beyond its natural size.*” Restriction of anchor mobility by an elongated tail
should therefore have the same effect as replacement of the transmembrane
peptide with GPI anchor, i.e. it should interfere with formation and
enlargement of fusion pores rather than with hemifusion.

Studies with acylation mutants of FPV HA indicated that loss of the tail
fatty acids reduces fusion activity similar to tail elongation (manuscript in
preparation). Thus, it appears that size and hydrophobicity of the tail are
important determinants for anchor mobility. Our observation that removal of
the tail has only small effect on fusion*® is conform with this concept. These
data are also compatible with other models proposed by Blumenthal et al*®
and Kanaseki et al.’”? The former group analyzed the kinetics of fusion pore
formation and the latter group succeeded in direct observation of fusion pores
through the quick-freezing electron microscopy.

CONCLUSION

Molecular mechanism of membrane fusion is not yet fully understood, but,
as mentioned above, a lot of informations have been accumulated enough to
allow us speculate the mechanism. Two adjacent membranes should be bridged
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with the long -helical coiled coil. The top end of the coiled coil has the
fusion peptide inserted into the target membrane and the other end of the coil
links with the anchor domain embedded in the viral envelope or in the
membrane of virus-infected cell. The bridge may be folded reversibly at the
Jjunction of the coiled coil and the anchor domain. This folding may cause
perturbation and mixing of the lipid bilayers, eventually resulting in membrane
fusion.
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